

Sound and Vibration

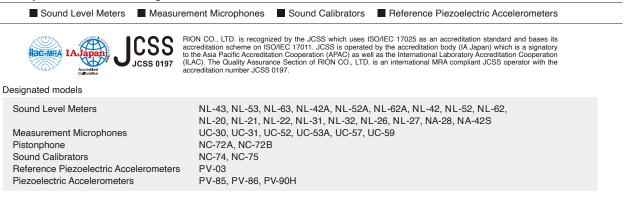
RION S&V Measuring Instruments General Catalog 2023

About general requirements for the competence of testing and calibration laboratories (ISO/IEC 17025)

RION Service Center CO., LTD. has earned certification under ISO/IEC 17025, an international standard on the ability of testing laboratories to generate accurate results. This makes us the first calibration service provider in Japan for manufacturers of sound level meters and sound calibrators to have earned this certification.* ISO/IEC 17025 is a standard for certification by an independent certifying agency on the ability of testing and calibration laboratories to generate accurate measurements and calibration results. It establishes requirements for testing laboratories engaged in activities such as product testing, analysis, and measurement as well as calibration laboratories engaged in the business of calibrating measurement instruments. A certified laboratory is internationally certified to possess management competence in product control and quality control as well as technical competence in generating reliable testing and calibration results.

*IEC 61672-3 (Electroacoustics - Sound level meters, Part 3: Periodic tests), the calibration method for sound level meters, and IEC 60942 (Electroacoustics - Sound calibrators, Annex B: Periodic tests), the calibration method for the sound calibrators used to calibrate such sound level meters

Designated models


Sound Level Meters
Pistonphone
Sound Calibrators

NL-43, NL-53, NL-63, NL-42A, NL-52A, NL-62A, NL-42, NL-52, NL-62, NL-27, NA-28 NC-72A, NC-72B NC-74. NC-75

About the JCSS Calibration Certificate

The Quality Assurance Section of RION CO., LTD. has gained accreditation by the JCSS (Japan Calibration Service System) as an MRA (Mutual Recognition Arrangement) compliant operator in the category of Acoustics & Ultrasound, Acceleration Measuring Instruments (accreditation number JCSS 0197). JCSS is operated by the accreditation body (IA Japan) which is a signatory to the Asia Pacific Accreditation Cooperation (APAC) as well as the International Laboratory Accreditation Cooperation (ILAC). Being recognized as an international MRA compliant JCSS operator means that RION can issue calibration certificates bearing the ILAC MRA compliant JCSS symbol for acoustics & acceleration measuring instruments (sound level meters, measurement microphones, sound calibrators, accelerometer). Calibration certificates with the ILAC MRA compliant JCSS symbol are recognized throughout the world.

JCSS Compliant Acoustic Measuring Instruments

ISO Certification

ISO 14001 certification

In 1999, RION CO., LTD. obtained ISO 14001 certification for its environment management system, and is keeping the certification current (ISO 14001: 2015). **ISO 9001 certification**

In 1993, RION CO., LTD. obtained ISO 9001 certification for its quality management system, and is keeping the certification current (ISO 9001: 2015).

Designated Manufacturer According to the Japan Measurement Act

RION CO., LTD. is a designated manufacturer according to the Japan Measurement Act, category for special measurement instrument (sound level meters and vibration level meters). A designated manufacturer is officially recognized as having excellent manufacturing facilities as well as effective quality control systems. Such a manufacturer is allowed to carry out product verification corresponding to national certification verification, based on the Japan Measurement Act verification regulations. Products which pass such a verification receive a seal that certifies compliance with the required standards. The seal has the same legal status as an official verification mark, and means that the measurement device can be used for commercial transactions and authentication.

Designation dates and designation numbers

- Sound level meters Designation date: May 13, 1998, Designation number: 341301
- Vibration level meters Designation date: March 6, 2000, Designation number: 351301

INDEX

RION Green Products	P4 to 5
---------------------	---------

Sound Level Meter

Sound Level Meter ·····P6 to 11
Sound Level Meter Unit ······P11
Aircraft Noise Monitoring System /
Acoustic Camera ·····P12 to 13
Measurement Microphone / Preamplifier ······P14
Optional accessories (For Sound Level Measurement) ······P15
Sound level Meter Selection Examples /
Condenser microphone selection examplesP16
Measurement Microphone Combination Examples ······P17
Sound Level Meter Connection ExamplesP18

Vibration Meter

Piezoelectric Accelerometers ·····P19
Servo Accelerometer etc. P20
Tri-axial Groundborne Vibration MeterP21
Vibration Level Meter ·····P22
3-Axis Vibration Meter ·····P23
General-Purpose Vibration Meter P24
Vibration Analyzer ·····P25
Vibration Meter Unit /
2-Channel Charge Amplifier /
General-Purpose Vibration MeterP26 to 27
Vibration Monitor / Piezoelectric Accelerometers P28
Vibration Meter Selection ExamplesP29
Accelerometer SelectionP30
Vibration Meter Connection ExamplesP31

Frequency Analyzer

Multi-Channel Signal Analyzer / Software /	
System ·····P32	to 37
Sound and Vibration Evaluation SystemP38	to 39
Portable Multi-function Measuring System ·······P40	to 41

Recorder

Data Recorder / Software ·····P42 to 43	
Level Recorder ·····P43	

Related Products

Tapping Machine / Heavy Floor Impact Source /
Impact Ball/Random Noise Generator ······P44
Anechoic Box / Anechoic Room /
Sound Proof Chamber P45
Impedance Tube ····· P46
Viscometer / Acoustical Volumeter ······ P47

External view drawings of measurement microphone and accelerometer cables P48

Measuring Instrument Combinations

Out line

Noise and Sound Level Meters ······ P57
Vibration and Vibration Meters P58
Frequency and Frequency Analyzers P59
Recording Sound and Vibration P60

Knowledge in a Nutshell

------ P61

Quality Documentation

Company Outline

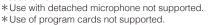
Other services offered by RION Group
Kobayasi Institute of Physical Research P64
RION CO., LTD

INDEX

INDEX (Model)	 P66
INDEX (Name)	 P67

RION Green Products

With the aim of creating truly environment friendly products, RION has established the "RION Green Procurement Guidelines". We use them as a standard for product development and parts procurement, to ensure that we can offer products that do not contain any harmful or hazardous chemical substances.



class 1 / class 2 Sound Level Meters NL-43/53/63

Equipped with LAN terminals to enhance connectivity with other devices. The USB Type-C terminal allows power supply from mobile batteries compatible with USB Type-C connections. Buttons on the unit and the large, easily readable 3.5-inch color touch panel LCD ensures ease of use. These models offer functions for measuring A-weighted sound pressure levels, equivalent continuous A-weighted sound pressure levels, and minimum and maximum sound pressure levels, as well as percentile and sound exposure levels. Measurement data can be saved/written to internal memory or an SD card. The single range format eliminates the need to select and switch between ranges during measurements. The display interface offers multiple language options. In addition to the LAN and USB terminals, the unit is equipped with AC output, DC output, and RS-232C terminals. The water resistance performance of the main unit meets IP54 specificans (excluding the microphone) for use outdoors. The models can also run on AA alkaline batteries or Ni-MH batteries. The NL-63 can measure both ultra-low frequency (1 Hz–20 kHz) and audible frequency sound pressure levels.

class 2 Sound Level Meter NL-27

Compact and lightweight unit, designed for simple operation. Offers wide linearity range of 100 dB and covers 30 to 137 dB sound level measurement with a single range. Allows L_p , L_{eq} , L_E , and L_{max} measurement.

Aircraft Noise Monitoring System NA-39A

This system is designed for automated monitoring of aircraft noise. It is capable of calculating evaluation values according to the "Environmental Standard Related to Aircraft Noise".

Improved aircraft identification supports long-term measurement and generates more accurate data. Compact and lightweight design facilitates installation. Power consumption reduced by about fifty percent.

NA-42 Acoustic measurement device offers wide frequency range,

Measuring Amplifier

wide measurement level range, and support for connection of many different types of microphones.

Sound Level Meter Unit UN-14

Designed for linked use in a measurement system for sound and vibrations, supporting flexible configuration.

configuration. Integrated A, C, and Z weighting characteristics. AC and DC outputs allow connection of level recorder or analyzer.

Frequency analyzers providing both FFT analysis capability and 1/1, 1/3, 1/12 octave band analysis capability. Allow direct sensor connection with TEDS support. Designed for easy operation. Wide range of optional software available.

Pistonphone NC-72B

Suitable for IEC 60942: 2017 class LS/M and class 1/M, JIS C 1515: 2020 class LS/M and class 1/M. Calibration sound source outputs 250 Hz tone at 114 dB SPL.

Sound Calibrator NC-75

Conforming with IEC 60942: 2017 class 1 and JIS C 1515: 2020 class 1. Supports 1-inch, 1/2-inch, and 1/4-inch microphones. (1/4 inch with optional adapter)

Portable Multi-function Measuring System RIONOTE

Consists of the Main Control Unit and two types of sensor amp units. In combination with analysis programs and a wireless dock, the system adapts to a wide variety of measurements, including remote measuring applications. A choice of input and output connectors enables easy system expansion, and the large-format color touch panel display makes operation simple and intuitive. Various types of analysis programs will be released progressively.

Vibration Meter Unit UV-15

Suitable for a wide range of vibration measurements. Three types of input connectors and AC and DC outputs are provided. Integrator converts vibration acceleration signal into vibration displacement signal. Display readings for three detection types.

2-Channel Charge Amplifier UV-16

0

Input connectors and AC output connectors for two channels. Linked use of several units allows multi-channel configuration. Integrator converts vibration acceleration signal into vibration displacement signal. Other features include high-pass filter, low-pass filter, and integrated oscillator for calibration of a level recorder or frequency analyzer.

Vibration Analyzer VA-12

Vibration meter with FFT analysis function. Designed for hand-held use in the field, for example to perform equipment diagnosis. Color TFT display provides excellent readability, and convenient Japanese-language or English-language menus can be used for measurement. Sampling frequency 51.2 kHz. 24 bit A/D conversion provides dynamic range of up to 110 dB. Equipped with USB port and SD card slot.

4 channel Data Recorder DA-21

Capable of recording acoustic or vibration waveforms and various voltage signals in the field. Data are saved on memory card in WAVE format, and analog playback is supported. Directly importing data into a computer for waveform analysis processing is also possible.

General-Purpose Vibration Meter VM-83

Measure and evaluate vibrations using a piezoelectric accelerometer or servo accelerometer. With the servo accelerometer, even very low frequency vibrations from 0.1 Hz upwards can be measured. Measurement items are acceleration, velocity, and displacement.

Piezoelectric Accelerometers PV Series

Covering a broad range of applications, these accelerometers are available in many sizes and configurations, ranging from an ultra-compact unit weighing only 0.7 grams to high output and high sensitivity types, as well as accelerometers with high temperature resistance for nuclear power plant use, 3-axis types, integrated amplifier types, and more.

Viscometer VT-06 0.3 to 4,000 dPa·s

Rotary type viscometer using resistance to rotor movement caused by viscosity (torque) to obtain readings. Designed for quality control applications in manufacturing of industrial products such as petrochemicals, paint, and adhesives, as well as foodstuffs.

Simultaneous real-time octave band and 1/3 octave band analysis Simple operation combined with high performance Optimized features for on-site use

Sound Level Meter (class 1) and 1/3 Octave Band **Real-time Analyzer** NA-28

Designated manufacturer of special measurement instrument Designation number: 341301 (The Japan Measurement Act) Type certification number (The Japan Measurement Act): TF223

Sound level meter and filter functions for octave band and 1/3 octave band analysis, compliant with international standard requirements

Simultaneous real-time octave band and 1/3 octave band analysis capability

Direct storage of measurement result data on CompactFlash (CF) memory card USB port also supports use of unit as removable disk. Optional infrared remote control allows convenient operation from a distance.

Specifications

specifications					8
Applicable standards			Sound level meter : Sound Level Meter according to the Japan Measurement Act		
			JIS C 1509-1: 2017 class 1, JIS C 1516: 2020 cl	ass 1, JIS C 1513 - 1 : 2020 class 1, JIS C 151:	3: 2002 class 1, JIS C 1514: 2002 class 1,
			IEC 61672-1: 2013/2002 class 1, IEC 61260-1:	2014 class 1, ANSI/ASA S1.4-2014/Part 1 clas	s 1, ANSI S1.11-2004 class 1
Measurement functions			Simultaneous main channel and sub channel measurement, both in sound level meter mode and analyzer mode.		
			Frequency weighting and time weighting characteristics can be set separately for main channel and sub channel.		
	Meas	urement items	Simultaneous measurement of following items, with	selected time weighting and frequency weighting	ng characteristics: Lp, Leg, LE, Lmax, Lmin, LN, Lp or Leg, 1:
			For sub channel in sound level meter mode, one	of following items can be selected: Lpeak, Ltm5	
Linearity range (ad	ccordin	g to JIS, IEC)	25 dB to 140 dB		
Measurement leve	el range	1	A weighting: 25 dB to 140 dB, C weighting: 33 dB	to 140 dB, Z weighting: 38 dB to 140 dB	
Measurement frequency range		range	10 Hz to 20 kHz		
Analysis frequency	Octav	e analysis	16 Hz to 16 kHz (max. 8 kHz during simultaneou	s octave and 1/3 octave band analysis)	
range	1/3 oc	tave analysis	12.5 Hz to 20 kHz (max. 12.5 kHz during simulta	neous octave and 1/3 octave band analysis)	
Correction	Winds	screen correction	Compensation of frequency characteristics for st	andard compliance when windscreen is mount	ed. On/off selection from menu screen.
functions	Diffuse sound field correction		Compensation of frequency characteristics for st	andard compliance (ANSI S1.4) in diffuse sour	nd fields. On/off selection from menu screen.
Storage			Sound level and processing results are stored by Manual store or A	to store in internal memory or on CF card. Internal memory has	1 block. One of Manual store, Auto store 1, or Auto store 2 can be selecte
	Manu	al store	Manual recording of measurement results per ad	dress together with measurement start time	
	Auto :	store	Continuous recording of measurement results at selected time	e intervals. 4 types of markers can be set to identify events	that occur while recording. Pause does not function during auto-sto
	Auto 1		Maximum measurement time: 1 000 hours (when using CF card; for internal memory, see below)		
			Sound level meter mode: Continuous store of Lp,	Leq, Lmax, Lmin as 1 set on CF card at 100 ms	intervals
			(sub channel results cannot be stored)		
			Sampling cycle: 100 m	s (Lp, Leq, Lmax, Lmin) only; internal memory sto	rage capacity: max. 3 hours
			Analyzer mode: Continuous store of band level and all-pass time-weighted sound level L_p on CF card		
			Main channel: All-pass value and band level values, Sub channel: All-pass value only		
			Sampling cycle: 1 ms to 1 sec, Leq, 1s; internal memory storage capacity: max.10 000 data sets (2.7 hours for 1 sec or Leq, 1s)		
		Auto 2	Sound level meter mode: Continuous recording of	on CF card of Main channel and sub-channel a	II-pass measurement values,
			together with measure	nent start time, for each measurement time int	terval
			Analyzer mode: Continuous recording on CF car	d of Main channel band levels and all-pass val	ues and sub-channel all-pass values,
			together with measurement start	time, for each measurement time interval	
			Data capacity: Internal memory max. 1 000 data	sets, CF card max. 300 000 data sets	
Inputs/Outputs			AC output, DC output, comparator output, extern	al trigger input, USB port, infrared remote cont	trol sensor
Power			Four IEC R14P (size C) batteries (15 hours operation with alkaline batteries) or external power supply (AC adapter, supplied)		
Temperature/humidity range for operation		ge for operation	-10 °C to +50 °C, 10 % to 90 %RH		
Dimensions, Weig	lht		331 (H) × 89 (W) × 51 (D) mm, approx. 730 g (in	cluding batteries)	
ptions					
Remote Control U	Init		NA-27RC1	Microphone Extension Cable*2	EC-04 (2 m and up)
Memory Card (256 MB CF card*1)		F card*1)	MC-25LC1	Pistonphone	NC-72B

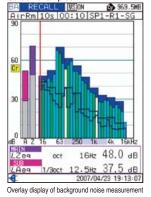
*1 Use RION supplied cards for assured operation *2 Max. extension cable length for the Japan Measurement Act compliance is 35 meters.

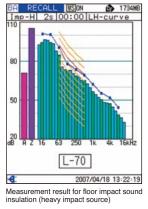
7

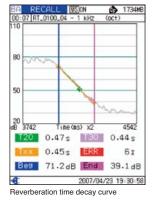
Enables use of NA-28 for building acoustics measurements of airborne sound insulation and impact sound insulation (D value, L value etc.) as well as N/NC value measurement and reverberation time measurement

Enables NA-28 to perform JIS and ISO compliant measurement and calculation of evaluation ratings

Result data are stored as text files, and an Excel macro allows evaluation index calculation


Combination with Waveform Recording Card NX-28WR allows simultaneous recording of sound pressure waveform at time of measurement Screen examples

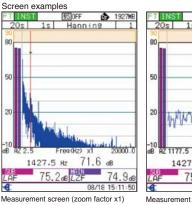


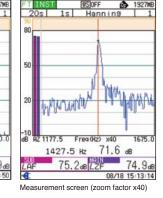

Building

NX-28BA

Acoustic Card

Sp


Specifications		
Analysis modes Real-time octave analysis, real-time 1/3 octave analysis		
	Simultaneous real-time octave and 1/3 octave analysis (sound level meter mode not available)	
Measurement items	easurement items Instantaneous sound pressure level L_p , Equivalent continuous sound pressure level L_{eq} ,	
(depending on measurement mode)	nt mode) maximum of time-weighted sound level L _{max}	
Measurement types Airborne sound insulation between rooms, measurement of floor impact sound insulation (standard light impact sour		
	measurement of floor impact sound insulation (standard heavy impact source), room environmental sound level (N value or	
	NC value), reverberation time, airborne sound insulation of facade elements and facades, sound level from service equipment	


FFT **Analysis Card** NX-28FT

Adds FFT analysis capability to NA-28 Analysis frequency range: 20 kHz (fixed) Connection of vibration sensor enables vibration level measurement Pure tone evaluation capability compliant with ISO 1996-2: 2007 - Annex C

Number of analysis lines: 8 000 (fixed) (frame time 400 ms, frequency resolution 2.5 Hz) Specifications

Measurement mode	Main channel all-pass value and FFT analysis		
(FFT mode)	Sub-channel all-pass value		
Measurement items	Simultaneous measurement of INST and LIN or		
	MAX Measurement time 1 to 999 seconds		
Dynamic range	100 dB		
Analysis frequency range	20 kHz (fixed)		
Time window functions	Hanning, Rectangular		
Number of spectrum lines	8 000 (fixed) (frame time 400 ms, frequency		
	resolution 2.5 Hz)		
Sampling frequency	48 kHz (fixed)		
Top list screen	List display of frequency and level values for		
	top 20 lines, in descending order		
Trigger	Controls start of measurement and memory		
	store operation		
Manual store	Stores measurement results.		

Waveform Recording Card NX-28WR

Waveform

Recording Card

Adds recording capability to NA-28

- Allows simultaneous recording of sound pressure waveform along with sound p -28 Recorded data are in uncompressed WAVE format that
 - can be handled by generic software*
 - Use of various waveform analysis applications possible Depending on the sampling frequency, some software applications may not support direct import. For such software, a sampling frequency converter or other suitable tool should be used. For details, contact RION distributors.

Samplir	ng frequency	settings and	recording	times on (CF card

	256 MB	2 GB
48 kHz	30 m	4 h 40 m
24 kHz	1 h	9 h 20 m
12 kHz	2 h 10 m	18 h 50 m
64 kHz	20 m	3 h 30 m
32 kHz	50 m	7 h
16 kHz	1 h 40 m	14 h 10 m

Actual times may differ slightly depending on the number of files.

Sp	ecifications			
S	ampling frequencies			
	Simultaneous analysis	48 kHz, 24 kHz, 12 kHz		
	Sound level meter, octave band analysis,	64 kHz, 32 kHz, 16 kHz		
	1/3 octave band analysis			
Frequency weighting characteristics		Z weighting (flat response, fixed)		
Recording functions				
	Event mode	Level recording, interval recording, manual recording		
Total mode		Total recording		
С	ombined use with Building Acoustic	Card (NX-28BA)		
	Insulation and impact sound measurement	Total recording		
	Reverberation time measurement	Total recording with pretrigger (1 sec)		
_	Playback and reanalysis is done on your PC, not the NA-28.			

Display and analyze data recorded with NX-28WR in various software applications Waveform Analysis software **Waveform Analysis software** For specifications, see page 43. **CAT-WAVE** For specifications, see page 43. AS-70

	otoro oporation	
anual store	Stores measurement results.	
pressure level while	performing frequency analysis with NA	
S		
luencies		
ous analysis	48 kHz, 24 kHz, 12 kHz	
eter, octave band analysis, 64 kHz, 32 kHz, 16 kHz		
band analysis		
ighting characteristics	Z weighting (flat response, fixed)	

Exploring the possibility of Noise Measurement

Designated manufacturer of special measurement instrument Designation number : 341301 (The Japan Measurement Act)

SD-CARD Memory card compatible model For details, see "Memory Card" on page 15.

Class 1 Sound Level Meter

NL-63 CE (With low-frequency sound measurement function)

Class 1 Sound Level Meter NL-53 CC

Class 2 Sound Level Meter

NL-43 (e

Equipped with LAN terminals to enhance connectivity with other devices.

Power can be supplied from portable charger via the USB Type-C connector.

A single sound level meter can measure up to four measurement conditions simultaneously. Different frequency weighting and time weighting settings can be specified for each of four measurement conditions.

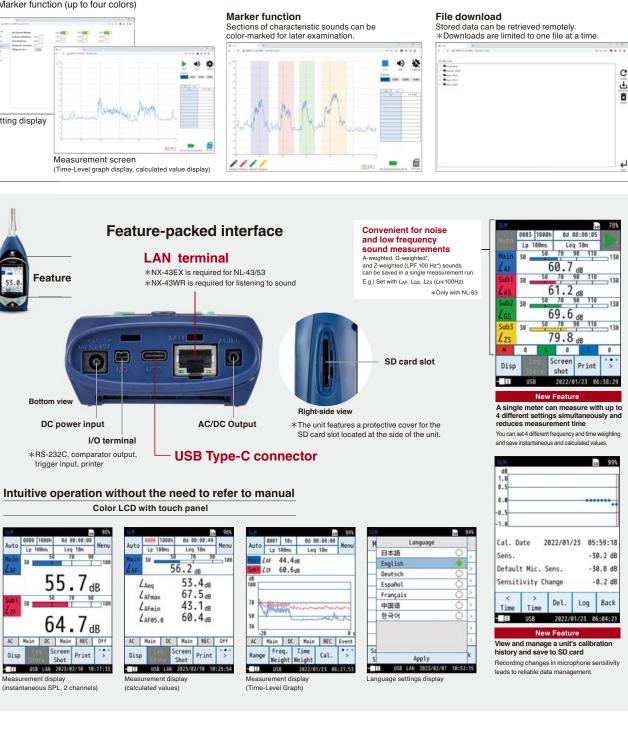
53.0d

63.0

NL-63

The color touch panel LCD has been designed to offer high visibility both indoors and outdoors, and in the dark.

NL-53

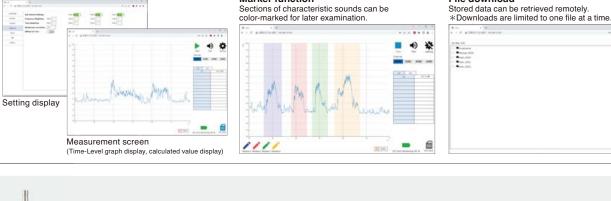

53.0

43.0

NL-43

Specification	S	Class 1 Sound Level Meter (With low-frequency sound measurement function) NL-63	Class 1 Sound Level Meter NL-53	Class 2 Sound Lev	el Meter	
Applicable standards		IEC 61672-1: 2013 class 1, ISO 7196: 1995,	IEC 61672-1: 2013 class 1,	IEC 61672-1: 2013 class 2,		
		ANSI/ASA S1.4-2014/Part1 class 1, JIS C 1509-1:2017 class 1,	ANSI/ASA S1.4-2014/Part1 class 1,	ANSI/ASA S1.4-2014/Part1	class 2,	
		JIS C 1516: 2020 class 1, ISO 7196: 1995	JIS C 1509-1: 2017 class 1, JIS C 1516: 2020 clas	s 1 JIS C 1509-1: 2017 class 2,	JIS C 1516: 2020 class 2	
		CE marking =EMC Directive Directive 2014/30/EU EN 61326-1	:2013 • RoHS Directive Directive 2011/65/EU EN IEC	63000:2018 Low Voltage Dire	ective Directive 2014/35/El	
		EN 61010-1:2010/A1:2019, UKCA Marking, China RoHS, KC ma	ark, VCCI Class B			
Measurement fr	unction	Simultaneous measurement of up to four conditions (Main channel,	Sub1 to Sub3 channels) with selected time weighting a	nd frequency weighting		
	Instantaneous value	Time-weighted sound pressure level Lp				
	Calculated value	Equivalent continuous sound level: Leg, I-time-weighted equiva	alent continuous sound level: L _{lea} *2, Moving L _{ea} : L _e	a, mov *2, Sound exposure level:	L _E , Maximum sound leve	
		Lmax, Minimum sound level: Lmin, Percentile sound level: LN, P	eak sound level: Lpeak, Takt-max sound level: Ltm5			
Measurement le	evel range	A-weighting: 25 dB to 138 dB, C-weighting: 33 dB to 138 dB,	A-weighting: 25 dB to 138 dB, C-weighting: 33 dB	to 138 dB, Z-weighting: 38 dB to	138 dB,	
		G-weighting: 43 dB to 138 dB, Z-weighting: 50 dB to 138 dB,	C-weighted peak sound level: 55 dB to 141 dB, Z-v	veighted peak sound level: 60 dB	8 to 141 dB	
		C-weighted peak sound level: 60 dB to 141 dB, Z-weighted				
		peak sound level: 65 dB to 141 dB				
Measurement f	requency range	1 Hz to 20 kHz	10 Hz to 20 kHz	20 Hz to 8 kHz		
Frequency weig	ghting	A, C, G, Z	A, C, Z			
Time weighting		F (Fast), S (Slow), I (Impulse), 10 s	F (Fast), S (Slow), I (Impulse)*2			
Conection funct	tion	Windscreen correction function : Corrects the influence on the	frequency response when the windscreen is installed	j.		
		Diffuse sound field correction function : Corrects the influence				
Store	Manual store	Data for measurement results are stored manually in single add	dress increments.			
	Number of data	Internal memory: max. 1000 sets				
		SD Card: depends on the capacity of the SD Card*1				
	Measurement time	10 s, 1, 5, 10, 15, 30 m, 1, 8, 24 h, User Setting (1 s to 24 h)				
	Auto store*2	Instantaneous values (L_p store) and processed values (L_{eq} store)	are stored continuously on the SD card and automatic	ally at preset intervals.		
	L _p store interval	Off, 10 ms, 25 ms, 100 ms, 200 ms, 1 s				
	Leg calculation interval	Off, 10 s, 1, 5, 10, 15, 30, 1, 8, 24 h, or User Setting (Min. 1 s to	max. 24 h)			
	Number of data	SD card: Data can be saved with store names from 0000 to 999				
	Measurement time	10 s, 1, 5, 10, 15, 30, 1, 8, 24 h, User Setting (Min. 1 s to max 100		rd runs out of space*1)		
Waveform	File format	Uncompressed waveform WAVE file	, , , , , , , , , , , , , , , , , , ,			
recording*2*3	Sampling frequency	Select 48 kHz, 24 kHz, 12 kHz, 1200 Hz or 240 kHz	Select 48 kHz, 24 kHz or 12 kHz			
	Data length	Select 24 bit or 16 bit				
RS-232C Comr	-	Measurement values can be acquired and settings can be changed by using communication commands				
USB	Communication	Measurement values can be acquired and settings can be changed by using communication commands				
	Data transfer	Enables the transferring of data by making the computer recognize the SD card as a removable disk				
LAN*2	Communication	· · · · · · · · · · · · · · · · · · ·	Endote the transmission of the second s			
	Data transfer	Data on an SD card can be transfered to a computer				
	Web browser display	Via a web browser, settings can be changed and measured val	ues displayed. Via Google Chrome on PC, audio can	be played.*3		
Data	Type of Instantaneous value	L _p				
continuous	data Processed value	Leq, Lmax, Lmin, Lpeak				
output*2	Output interval	100 ms (0.1 s)				
Power supply		4 × AA batteries, power supply to DC jack and USB port				
	Operating time	Alkaline battery LR6: Approx. 12 hours, Ni-MH rechargeable	Alkaline battery LR6: Approx. 16 hours, Ni-MH rec	hargeable		
	(at 23°C, ECO setting)	battery HR6: Approx. 12 hours, Portable charger: Approx.	battery HR6: Approx. 16 hours, Portable charger:	-		
	(20 hours of power at 5 000 mAh	24 hours of power at 5000 mAh	FF -		
		*When making Auto store mode and ECO settings, The operating time	*When making Auto store mode and ECO settings, The o	perating time		
		varies depending on the device settings and the battery manufacturer	varies depending on the device settings and the battery m			
Dustproof and waterproof performance*4		The second s				
		Approx. 265 mm (H) × 83.5 mm (W) × 34.5 mm (D),	Approx. 258 mm (H) × 83.5 mm (W) × 34.5 mm (D)			
		approx. 400 g (including batteries)	approx. 400 g (including batteries)	,		
Dimensions, we		NX-43EX required for NL-43/NL-53 (sold separately) *3 NX-43W		harmful dust and water splashing	a from any direction	
Dimensions, we	v quaranteed products *2					
Dimensions, we *1 Use Rion full	y guaranteed products. *2				g nom any direction.	
Dimensions, we *1 Use Rion full Options			NE-21P Rain-pro		WS-16	
Dimensions, we	12 MB SD card)	MC-51SD1 AC adapter (100 V to 240 V) MC-20SD2 Microphone extension cable	NE-21P Rain-pro EC-04 (2 m and up) Pistonph	tection windscreen		

Noise monitoring of equipment and machinery


Case Case The operational status of the sound level meter can at factories and site boundary lines be checked remotely from a web browser, reducing 1 2 Connecting the LAN terminal on the sound level meter and computer the number of site visits. You can also use the meter with a LAN cable allows noise monitoring from the web browser. with a mobile router for wireless communications HUB HUB Local network Measurement site The Internet e.g., wind turbine Monitoring location such as office Measurement site Remote location such as office \pm A NX-43WR is required to listen to the sound during noise measurement on your browser.

Environmental noise monitoring of remote locations

Web browser

By connecting to a network, remote connection via web browser of PC or smartphone is established.

View and acquire measurement date Remote operation of the sound level meter (measurement settings, start and stop of measurement, time adjustment, etc.) Real-time audio playback (with optional NX-43WR, Supported by only Google Chrome) File download (Downloads are limited to one file at a time.) Marker function (up to four colors)

Adds a number of programs. NX-43EX **Extended Function Program** Auto store function (instantaneous value, processed value) Continuous data output function Comparator function NX-43EX Trigger function LAN function Four types of marker functions NX-43EX Installation of NX-43EX*1 enables addition of NX-43WR / NX-43RT / NX-43FT -*1 The NX-43EX program cannot be uninstalled. Program type NX-43WR NX-43RT NX-43FT Additional function NX-43WR 53.0 Waveform recording The NX-43EX is supplied on the Octave, 1/3 octave real-time analysis NX-43RT 512 MB SD card. The 512 MB SD Octave, 1/3 octave band filter output card can be used as a memory card NX-43FT FFT analysis after installing the program. Octave, 1/3 Octave Real-time

Analysis Program

Examples of the display screen

65.8 dB

(tentative)

LA

88

68

48

USB

NX-43RT

NX-63RT

Compatible models NI -63

Octave band and

1/3 octave band

analysis can be

card after installing the program.

performed.

Waveform Recording Program NX-43WR

- This function enables users to record sounds and to process sound levels simultaneously
- Recorded data can be played on computer and used for frequency analysis. (Uncompressed waveform WAVE file)

		* Fi	or NL-63 on
Sampling at 48 kHz, 24 k Selection of 24 bit or 16 l	,	z, 1200Hz	*, 240Hz*
Maximum recording time (Assumes certain settings for auto store mode, 16 bit, and <i>Lp</i> store cycle of 100 ms:) * For NL-63 only			
Memory card Sampling frequency	512 MB	2 GB	32 GB
Sampling frequency 48 kHz	512 MB 1 h	2 GB 4 h	32 GB 74 h
Sampling frequency			74 h
48 kHz	1 h	4 h	74 h 146 h
48 kHz 24 kHz	1 h 2 h	4 h 9 h	

ccordingly, the maximum recording time is reduced to 2/3 The NX-43WR is supplied on the 2 GB SD card. The 2 GB SD card can be used as a memory

card after installing the program.

Complete software for environmental measurements

Data Management Software for Environmental Measurement AS-60

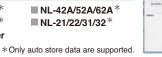
- Easy to use
- Reports easy to prepare
- Simultaneous display of multiple data items (up to 32 data items)
- Data on the data recorder can be loaded (CSV file for DA-40 Viewer) Data combination

Recommended computer specifications on for AS-60/60BT

	A3-00/00HT)	
CPU	Intel Core i5 2.0 GHz or higher	
RAM	2 GB or more (4 GB recommended)	
DISPLAY	XGA (1024 x 768) or more,	
	at least 65 536 colors	
OS	Microsoft Windows 10 Pro 64 bit,	
	11 Pro 64 bit	
If AS-60/60RT/60VM is used on the NL-42A/52A/		

- 42/52, the NX-42EX is also needed. If AS-60/60RT/60VM is used on the NL-43/53,
- the NX-43EX is also needed

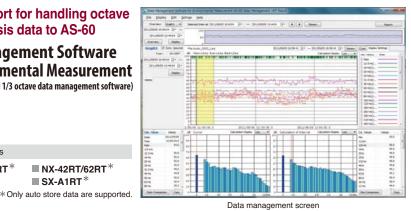
Enables measurement data graph display, arithmetic processing, sound exclusion, report creation, file output, and real-sound file playback.


Supported models

Supported models NX-43RT/63RT*

NA-28^{*}

NL-43/53/63 * NL-42/52/62 *

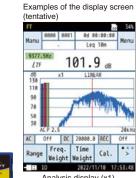

DA-40 Viewer

Adds support for handling octave band analysis data to AS-60

Data Management Software for Environmental Measurement

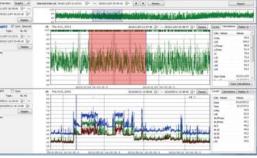
(Includes octave and 1/3 octave data management software) AS-60RT


This software analyzes and stores data files (recorded by the NX-43WR) in the WAVE format. **Waveform Analysis Software Waveform Analysis Software** For specifications, see page 43. AS-70 CAT-WAVE


NX-42RT/62RT *

SY-A1RT

For specifications, see page 43.


FFT Analysis Program NX-43FT

AC Off DC Off REC Total Freq. Freq 2022/12/19 09:52:07 Analysis display (x1) 1/3 octave band analysis display The NX-43RT, NX-63RT is supplied on the 512 MB SD card. The 512 MB SD card can be used as a memory

The NX-43FT is supplied on the 512 MB SD card. The 512 MB SD card can be used as a memory card after installing the program.

Data management screen

Ultra compact, Lightweight, High-performance

Designated manufacturer of special measurement instrument Designation number: 341301 (The Japan Measurement Act)

Sound Level Meter (class 2) NL-27 (6 Type certification number (The Japan Measurement Act): **TS221**

- Compliant with Japan Measurement Act, JIS, and IEC requirements Wide 107 dB linearity range allows sound level measurements from 30 to 137 dB without range switching
- Easy measurement of sound level (Lp), equivalent continuous sound level (Leq), maximum sound level (L_{max}), sound exposure level (L_E), and peak sound level (L_{Cpeak})

Applicable standards	IEC 61672-1: 2013 class 2, JIS C 1509-1: 2017 class 2, JIS C 1516: 2020,
	CE mark, WEEE Directive
Measurement functions	Sound level L _p , equivalent continuous sound level L _{eq} , sound exposure
Processing functions	level L _E , maximum sound level L _{max} , peak sound level L _{Cpeak}
(normal mode)	(only when peak range was selected)
Measurement level range	A-weighting: 30 dB to 137 dB,
(normal mode)	C-weighting: 36 dB to 137 dB
Measurement frequency range	20 Hz to 8 kHz
Power	Two IEC R03 (size AAA) batteries
Dimensions, Weight	Approx. 120 mm (H) × 63 (W) × 23.5 mm (D), approx. 105 g (including batteries
Options	
Pistonphone	NC-72B
Sound Calibrator	NC-75

For a wide range of high-precision acoustic measurements

Measuring Amplifier

NA-42 (without microphone)

Supports connection of low-noise microphones UC-34P and UC-57 as well as microphones UC-29/54 and others allowing measurement up to 100 kHz

Measurement functions	Sound pressure level Lp, r	naximum sound level L _{max} ,	
	peak sound pressure leve	L _{peak}	
Measurement frequency range	1 Hz to 100 kHz (main unit characteristics)		
Frequency weighting characteristics	A, C, FLAT		
Time weighting characteristics	F (Fast), S (Slow), I (Impu	lse)	
External filter	BNC connector		
input/output connector			
Power	Four IEC R14 (size C) batteries, AC adapter (NC-98E, supplied)		
Dimensions, Weight	171 (H) × 120 (W) × 236 (D) mm, approx. 1.8 kg (not including batteries)		
Options			
Microphone Extension Cable*	EC-04 (2 m and up)		
External Input Adapter	UA-01		
Interface Cable	5WKR4030	*Max. extension cable length for the Japan Measurement Act compliance is 15 meters	

- Allows connection of various microphones and preamplifiers to fit different measurement requirements
- Sound pressure level, sound level maximum, peak sound pressure level measurement modes (selectable)
- Measurement value display to two decimal values or one decimal value (selectable). Parameter information also shown.
- AC and DC output, serial communication function, comparator output function allow flexible configuration of various measurement or monitoring systems

Build flexible measurement systems for simultaneous measurement of sound and vibrations

Sound Level Meter Unit

UN-14 (E TEDS compliant

- Sound Level Meter Unit UN-14 and Vibration Meter Unit UV-15 can be linked in a measurement system with up to 16 channels
- Supports connection of measurement microphones and various preamplifiers
 - (with TEDS compliant input etc.)
- Display shows parameters, measurement value, and bar graph indication
- Linking with Interface Unit UV-22 allows setup and control from a computer, and transfer of measurement values
- Backlit LCD and LED warning indicators

Specificati	ions			
Inputs 7-pin input		For measurement microphone or preamplifier (max. input voltage ±10 V) (excl. UC-34P connection)		
connector		Microphone bias voltage +30 V, +60 V, +200 V		
	BNC connector	For CCLD compliant microphone or preamplifier (24 V 4 mA)		
		For TEDS compliant microphone (24 V 4 mA)		
Frequency v	veighting characteristics	A, C, Z (JIS C 1509-1 class 1, IEC 61672 class 1 electrical characteristics)		
Meas	surement	A: 30 dB to 128 dB (using UC-59, NH-17), C: 36 dB to 128 dB (using UC-59, NH-17)		
level	range	Z: 41 dB to 128 dB (using UC-59, NH-17) (HPF 20 Hz, LPF 20 kHz)		
Frequenc	y range	1 Hz to 80 kHz (20 Hz to 40 kHz ±0.5 dB) (1 Hz to 80 kHz ±3 dB)		
Time weig	hting characteristics	F, S, 10 ms (JIS C 1509-1 class 1 electrical characteristics)		
Power		9 V to 15 V DC, suitable AC adapter NC-99A, Battery Pack Unit BP-17,		
	Cigarette plug adapter CC-82 (option, up to 16 units*)			
		*Depending on car battery capacity		
Dimensions, Weight		150 (H) \times 36 (W) \times 179 (D) mm (not including protruding parts), approx. 500 g		
Options				
Micropho	ne Extension Cable*	EC-04 (2 m and up)		
BNC-BNC	Coaxial Cable	EC-90A (2 m and up)		
AC Adapter		NC-99A		

For specifications, see page 26. 27.

Rear View

Sound Level Meter (Environmental Noise Monitor)

All required functions for aircraft noise measurement combined in a single system

Aircraft Noise Monitoring System CE

- This system is designed for automated monitoring of aircraft noise. It is capable of calculating evaluation values according to the "Environmental Standard Related to Aircraft Noise".
- The sound source identification provided as a standard feature is based on real time 1/3 octave band analysis.
- AGPS function is also standard, for obtaining location information and enabling automatic time calibration.
- LAN port and modem connector enable internet connection via an external router or an ordinary telephone line.

Product Information

Environmental Noise Monitor NA-39A

Compliant with IEC 61672-1: 2013 class 1 (JIS C 1509-1: 2017 class 1). Standard configuration includes one-third octave frequency analysis function.

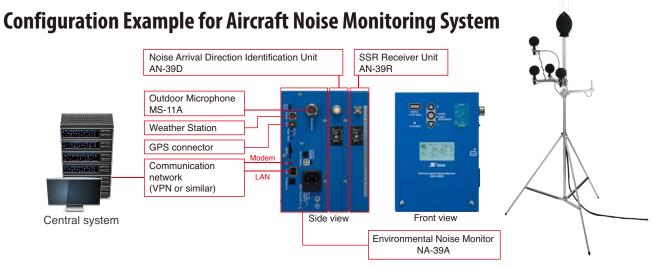
Noise Arrival Direction Identification Unit AN-39D

Elevation angle and bearing are measured using four microphones, to identify the arrival direction of aircraft noise and ground-level sound. From the sound source location and movement direction, aircraft noise can be identified with high accuracy.

SSR Receiver Unit AN-39R

Receives SSR (Secondary Surveillance Radar) information used for air traffic control. Capable of capturing the squawk code (temporary 4-digit identification code), pressure altitude, and address (unique aircraft number). (Only for aircraft transmitting this information)

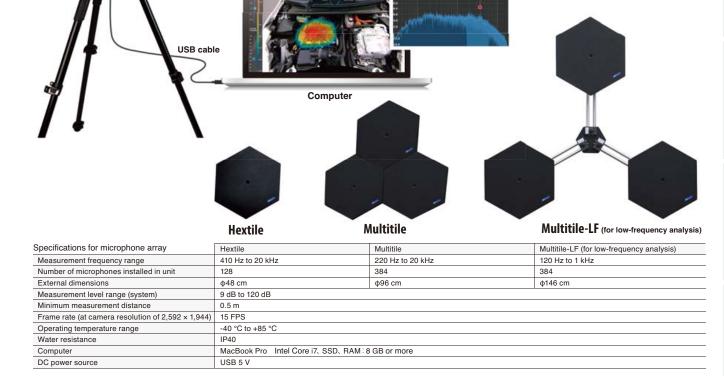
*Compared to predecessor NA-3


Outdoor Microphone MS-11A

The Outdoor Microphone MS-11A therefore incorporates an anti-condensation heater that counteracts the main cause of sensitivity drift. An internal sound source for testing is also provided, enabling daily automatic sensitivity checking.

All-Weather Windscreen WS-13

The all-weather windscreen is specially designed for the Outdoor Microphone MS-11A used with the Environmental Noise Monitor NA-39A. The combination of NA-39A and WS-13 ensures that the JIS C 1509-1: 2017 class 1 specifications are met with the windscreen in place. It also provides precipitation protection with an IPX3 rating.

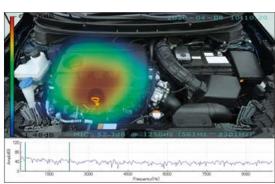


Achieves high dynamic range using overwhelming number of microphones

Acoustic camera Hextile/Multitile/Multitile-LF (for low-frequency analysis)

Realtime display of high-resolution color maps generated by high-speed data processing and beamforming

- The hexagonal microphone array module offers expandable functionality. The Multitile-LF for low-frequency analysis can process sound in the 120 Hz–1 kHz frequency range.
- Recorded data is stored in MP4 format for subsequent reanalysis.
- Available display modes include FFT analysis, octave band analysis, and spectral mapping
- The array of microphones can be connected using USB cables to allow easy settings and power supply.
- Camera view lets users experience sounds (virtually) at a specified point simply by selecting a point with the cursor.


Easy × Light × Compact × Visualization

Acoustic Camera SC-AC043

This innovative portable system combines a 30-microphone array with a tablet computer to enable visualization of sound sources.

- Possible applications include product development and on-site troubleshooting.
- Problematic sound sources can be quickly located, and the efficiency of countermeasures can be checked visually.

Measurement screen examples (simulated)

Sound Level Meter (Measurement Microphone/Preamplifier)

Condenser Microphone UC Series

- 1" microphone: For ultra-low sound pressure levels: upper
 - measurement frequency up to about 10 kHz
- 1/2" microphone: For a wide range of acoustic applications
- 1/4" microphone: For high frequencies and high sound pressure levels

Model	UC-27	UC-34P	UC-35P _{CE}	UC-30 (6	UC-31 _{(€}	UC-33P	UC-52	UC-59 _{(€}	UC-57 _{CE}	UC-29 (6	UC-54
Suitable preamplifier	NH-06A	NH-34 supplied	NH-35 supplied	NH-04B/ 05B/12A	NH-04B/ 05B/12A	NH-04B/ 05B/12A	NH-17/ 17A/22A	NH-17/ 17A/22A	NH-17/ 17A/22A	NH-05B (using UA-12)	NH-17/ 17A/22A (using UA-12)
Nominal diameter		1 inch				1/2	inch			1/4	inch
Frequency response	Sound field	Sound field	Sound field	Sound field	Sound field	Sound pressure	Sound field	Sound field	Sound field	Sound field	Sound field
Measurement frequency range (Hz)	5 to 12 500	10 to 12 500	10 to 12 500	10 to 20 000	10 to 35 000	10 to 20 000	20 to 8 000	10 to 20 000	10 to 16 000	20 to 100 000	20 to 100 000
Bias voltage (V)	200	200	0	200	200	200	0	0	0	200	0
Sensitivity level (dB re 1 V/Pa)*1	-26.5	-21/-1	0	-25.5	-37	-38	-33	-27	-22	-47	-48
Capacitance (pF)	54	_	_	17	20	20	19	13	14	6	4
Maximum input sound pressure level (dB) (Linearity tolerance ± 0.3 dB)	152	_	96	144	160 ^{*4}	160	150	148	132 ^{*4}	164 ^{*4}	164
Inherent noise level (dB)	12	2	4	20	26	28	24	18	13	42	45
Temperature coefficient (dB/°C)	-0.005	_	_	-0.007	-0.007	-0.009	-0.008	within ±0.35 dB (at 1 kHz) *3	within ±0.45 dB (at 250 Hz) *3	-0.01	within ±0.7 dB (at 250 Hz) *3
Diaphragm			Titanium alloy Titanium			nium					
Dimensions (mm)	dia.23.8 × 21.0	dia.23.8 × 131	dia.23.8 × 132.7	dia.13.2 × 15.0	dia.13.2 × 13.2	dia.13.2 × 13.0	dia.13.2 × 12.0	dia.13.2 × 14.3	dia.13.2 × 13.5	dia.7.0 × 10.0	dia.7.0 × 10.0

*1 Representative value for 1 kHz *2 UC-29/54 frequency range refers to microphone without grid. *3 -10 °C to +50 °C referenced to 23 °C *4 Distortion 3 %

*5 Depend on connected instrument

Microphone With Preamplifier

TEDS compliant

Model	UC-52T _{(€}	UC-57T ₍	UC-59T _{(€}
Microphones	UC-52	UC-57	UC-59
Nominal diameter		1/2 inch	
Frequency response	Sound field	Sound field	Sound field
Measurement frequency range (Hz)	20~8 000	10~16 000	10~20 000
Drive current	$2 \text{ mA}{\sim}4 \text{ mA}$	$2 \text{ mA}{\sim}4 \text{ mA}$	2 mA \sim 4 mA
A-weighted inherent noise level (dB)	24	13	18
Dimensions (mm)	φ13.2×97	φ13.2×98.5	φ13.2×99.4
Cable type	EC-90 series (BNC)	EC-90 series (BNC)	EC-90 series (BNC)
TEDS TED	S (Transducer Elect	ronic Data Sheet) is	a format for

 TEDS
 IEUS (Iransducer Electronic Data Sheet) is a format for sensor-specific information defined by the IEEE 1451 series of standards. It includes the data listed below and allows automatic calibration when the sensor is connected to TEDS compliant equipment.

 TEDS data
 Manufacturer ID, Model, Serial number, Sensitivity, Calibration date, etc.

Preamplifiers NH Series

- Faithful transmission of voltage signal generated by microphone to subsequent amplifier stages
- Versatile preamplifier lineup allows choosing the best combination of diameter and microphone type

Model	NH-06A	NH-04B	NH-12A	NH-17	NH-17A	NH-22A (€	NH-05B
Suitable microphones	UC-27	UC-30/31/33P	UC-30/31/33P	UC-52/54 ^{*1} / 57/59	UC-52/54 ^{*1} / 57/59	UC-52/54 ^{*1} /57/59 (constant current drive) 2 mA to 4 mA	UC-29 ^{*1} UC-30/31/33P
Nominal diameter	1 inch		1/2 inch,1/4 inch*1				1/2 inch, 1/4 inch
Input impedance (GΩ)	3	3	3	3	3	6	10
Input capacitance (pF)	0.3	0.25	0.25	0.8	0.8	0.7	0.2
Measurement frequency range (Hz)	5 to 100 000	10 to 100 000	10 to 100 000	10 to 100 000	10 to 100 000	10 to 100 000	10 to 100 000
Bias voltage (V)	200	200	200	0	0	0	200
Gain (dB), representative value	-0.1(54 pF)(UC-27)	-0.2 (17 pF)(UC-30)	-0.2 (17 pF)(UC-30)	-0.5 (13 pF)(UC-59)	-0.5 (13 pF)(UC-59)	-0.5 (13 pF)(UC-59)	-0.5 (6 pF)(UC-29)*1
A-weighted inherent noise level (dB)	12 (UC-27)	20 (UC-30)	20 (UC-30)	18 (UC-59)	18 (UC-59)	18 (UC-59)	42 (UC-29)
Output impedance (Ω)	100 or less	100 or less	100 or less	300 or less	300 or less	approx. 30	100 or less
Cable type		series P)	1.5 m integrated (7P)	5 m integrated (7P)	EC-04 series (7P)	EC-90 series (BNC)	EC-04 series (7P)

*1 Using UA-12

Optional accessories (For Sound Level Measurement)

114 dB/250 Hz calibration sound source

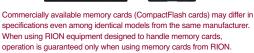
Pistonphone NC-72B (E

Compensation for atmospheric pressure not required

Sound Calibrator

NC-75 (€

Reduce adverse effects of wind noise Windscreens


WS-15

WS-16

Туре	Model
Windscreen for 1/2 inch microphones	WS-10
Windscreen for 1 inch microphones	WS-01
Windscreen for 1/4 inch microphones	WS-05
All-weather windscreen	WS-15
Windscreen mounting adapter	WS15006
Rain-protection windscreen	WS-16

Memory Card (CompactFlash / SD Card)

RION

Туре		Model		
256 MB memory card		MC-25LC1		
2 GB memory card		MC-20CF2		
SD cards				
Туре	Model	Supported models		
512 MB	MC-51SD1	For NL-43/53/63, VM-55/56		
SD card	MC-51SS1	For VA-12		
2 GB	MC-20SD2	For NL-43/53/63, DA-21, RIONOTE, VM-55/56		
SD card	MC-20SS2	For VA-12		
32 GB	MC-32SP3	For NL-43/53/63, DA-21, RIONOTE, VM-55/56		

Suitable for high-precision calibration of 1, 1/2, and 1/4 inch microphones Powered by AA batteries (alkaline, manganese, NiMH) x 6, alkaline for 15 hours and NiMH for 13 hours continuous use at room temperature

Specifications

Applicable standards	IEC 60942:2017 class LS/M, class 1/M, ANSI/ASA S1.40-2006 (R2016)
	class LS/C, class 1/C, JIS C 1515:2020 class LS/M, class 1/M
Nominal sound pressure level	114 dB Specified sound pressure level tolerance ±0.1 % (101.325 kPa)
Nominal frequency	250 Hz Specified frequency tolerance ±0.1%
THD + noise rating of generated sound	2.0 % max. (22.4 Hz to 22.4 kHz)
Static pressure	65 kPa to 108 kPa
Ambient temperature/Relative humidity	-10 °C to +55 °C, 10 % to 90 %RH (no condensation)
Dimensions, Weight	Approx. 62 (H) × 44 (W) × 170 (D) mm, approx. 750 g (including batteries)

- Compact, lightweight, and easy to use unit that meets the performance requirements for calibrating high-precision sound level meters
- Operates on two IEC R6 (size AA) batteries (alkaline or nickel-hydride), enabling continuous operation for at least 50 hours at room temperature

Supplied with JCSS Calibration Certificate

Specifications IEC 60942: 2017 class 1, JIS C 1515: 2020 class 1 Applicable standards 1 inch. 1/2 inch. and 1/4 inch types Compatible microphones

Nominal sound pressure level	94 dB
Nominal frequency	1 000 Hz
Dimensions, Weight	Approx. 42 (H) × 77 (W) × 70 (D) mm, approx. 200 g (including batteries)
Option	
1/4-inch microphone adapter	NC-75-S11

Dual Windscreen to minimize influence of wind noise

Noise Measurement for wind turbine

Dual Windscreen for Wind Turbine **Noise Measurement TWS-01**

For stationary sound level measurement

Acoustic Power Level measurement for wind turbine Windscreen **KWS-03**

Tripods				
ST-80 🖌		ST-9	91 🖌	1
ST-80	Model	ST-S	P1 Highest position (mm)	Weight (g)
	Model ST-80	Lowest position	Highest position	Weight (g) 1 500
Туре		Lowest position (mm)	Highest position (mm)	
Type Sound level meter tripod (compatible with extension rod)	ST-80	Lowest position (mm) 570	Highest position (mm) 1 460	1 500

Reduction of wind noise for tunnel experiment 1/2 inch Nose Cone (For UC-30, UC-31) ÙA-31 (€

External power supply for sound level meters and vibration meters

Battery Pack BP-21A

Holds four IEC R20 (size D) batteries Provides double battery life of IEC R14 (size C) or three times the battery life of IEC R6 (size AA) batteries Specifications

Dimensions, Weight 80 (H) × 170 (W) × 50 (D) mm, approx. 1.1 kg

Sound Level Meter Selection Examples

Environmental noise	* For product details, refer to the indicated pages. * For details on product combinations, refer to the section "Measuring Instrument Combinations" starting on page 49.				
Application	Models	See page			
General-purpose measurement	NL/NA series	6, 8 to 10			
Sound level recording	NL/NA series + DA-21, LR series	6, 8 to 10, 42, 43			
	NL/NA series (internal memory/memory card)	6, 8 to 10			
Frequency analysis	NA-28, NL-43/53/63 + Program	6, 8 to 10			
1/1 Octave Band, 1/3 Octave Band Analysis	SA-02 + Software	32 to 37			
	DA-21 + AS-70	42, 43			
Real sound recording, Data processing	NL-43/53/63 (+ NX-43WR) + AS-60 (RT), RIONOTE	8 to 10, 40			
Monitoring	NL-43/53/63	8 to 10			
Aircraft noise	NA-39A	12			
Low-frequency measurement	NL-63 + NX-63RT	8 to 10			
Calibration	NC-72B/75	15			

2 Architectural acoustics

Application	Models	See page
A-weighted sound pressure level measurement	NL/NA series	6, 8 to 10
Frequency analysis	NA-28, NL-43/53/63 + Program, RIONOTE + Program	6, 8 to 10, 40
Performance testing	SA-02 + Various software	32 to 37
Calibration	NC-72B/75	15

3 Acoustic power level measurement

Application	Models	See page
Sound pressure level method	SA02 + AS-30PA5, AS-31PA5	32, 34
Acoustic intensity method	SA02 + AS-15PA5	32, 35
Calibration	NC-72B/75	15

4 Others

Application	Models	See page
Ultrasound, high sound pressure measurement	NA-42 + UC-29/54/31 + NH series	11, 14
Low sound pressure level measurement	NA-42 + UC-34 + NH-34	11, 14
	UN-14, SA-02, RIONOTE, DA-21 + UC-35 + NH-35	11, 14, 32, 40, 42
Coupler, diffuse sound field measurement	NA-42 + UC-33P + NH series	11, 14
Comparator	NL-43/53/63, NA-42	8, 11
Acoustic analysis	NL-43/53 + NX-43FT	8 to 10
	SA-02	32
	RIONOTE + Program	40
Quality management	NL/NA series	6, 8 to 10
	SA-02	32
Calibration	NC-72B/75	15
Anechoic Chamber, Anechoic Box,	RKB series, RKA series, RKC series	45
Anechoic room, Sound-Proof Chamber		

Condenser Microphone Selection Examples

Normal measurement UC-52/UC-59

UC-52 is a microphone designed for use with class 2 sound level meters, and UC-59 for use with class 1 sound level meters.

These are electret microphones which do not require a bias voltage.

Measurement of high-level sounds UC-31/UC-29/UC-54*

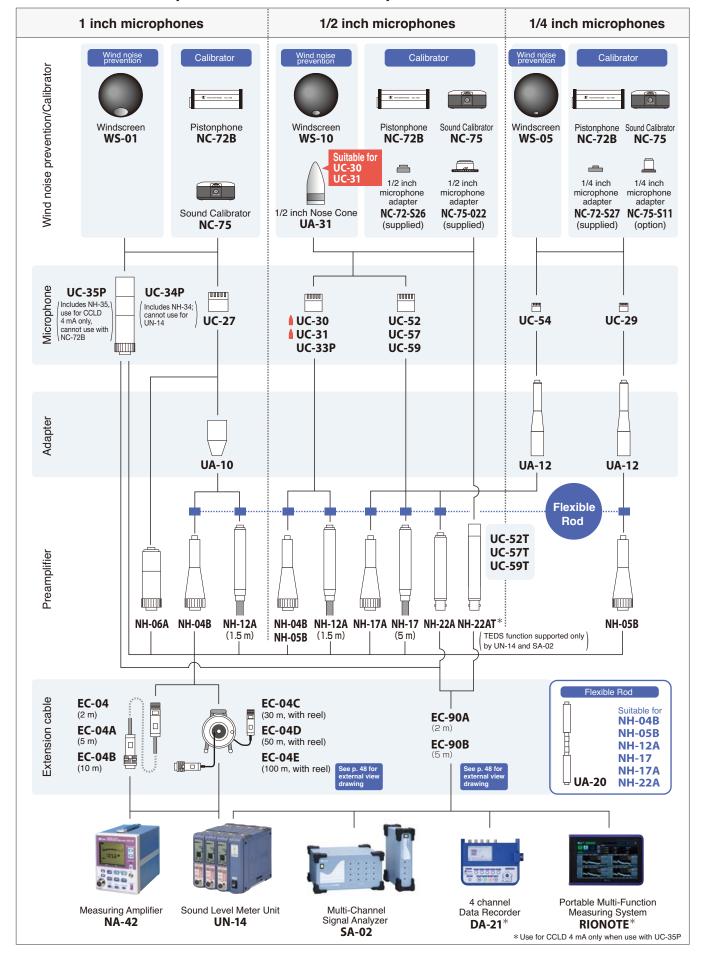
UC-31 is a low-sensitivity 1/2 inch microphone that can handle sound pressure levels in excess of 150 dB. UC-29/UC-54 is similar, but it has a nominal 1/4 inch diameter. UC-31 and UC-29 require a 200 V bias voltage. * UC-54: no bias voltage required.

2 Measurement of low-level sounds UC-27/UC-57

UC-27 is a 1 inch microphone that can measure sound pressure levels down to about 20 dB, and UC-57 is a 1/2 inch type rated for 22 dB. This is suitable for use in quiet environments. UC-27 requires a 200 V bias voltage, but UC-57 is an electret microphone which operates without external bias voltage.

Measurement extending to ultrasonic range UC-31/UC-29/UC-54

To make measurements of sounds including high-frequency components above 20 kHz, the same UC-31 (1/2 inch) and UC-29 (1/4 inch) microphones as for high-level measurements can be used. Response of UC-31 extends to about 35 kHz, while UC-29/UC-54 goes up as high as 100 kHz.


3 Measurement of extremely low-level sounds UC-34P (^{with} Preampifier) /UC-35P (^{with} Preampifier) NH-35

The UC-34P and UC-35P are 1 inch microphones specially designed to make measurements in very quiet environments, with sound pressure levels as low as a few decibels. The UC-34P requires a 200 V bias voltage supply. The UC-35P is a CCLD type low-noise electret microphone which can be connected directly to an analyzer or other measuring device that provides a +24 V / 4 mA power voltage supply.

Coupler and random sound field measurements UC-33P

UC-33P (1/2 inch) microphones are designed for acoustic measurements with the microphone mounted to a coupler, measurements in diffuse sound fields such as in a reverberation room, and similar applications.

The microphones require a 200 V bias voltage.

Measurement Microphone Combination Examples

Measuring Amplifier

Sound Level Meter Unit

NA-42

UN-14

UV-22

Interface Unit

SD-CARD CF-CARD Memory card compatible model For details, see "Memory Card" on page 15. REC 1 Sound Level Meter Connection Examples **AC Adapter** Sound Level Meter **Connection Cable** Peripheral Equipment Meter with integrated Sound Calibrator microphone \$. Pistonphone Sound Level NC-72B Meter 22 -Computer **NL-43** USB Type-C Cable 43.6 1 0 Ì Sound Calibrator NC-75 Computer RS-232C Serial I/O Cable CC-42R D AC Adapter Computer NE-21P Sound Level Meter NL-53 Peripheral device with BNC conn and 1 AC/DC Output splitter cable CC-43S *li in* The second s Battery Pack *BNC-Pin output code of CC-24 or CC-24S **BP-21A*** must be connected to each output port. Computer *Required CC-43J * For information on software eripheral device with for various measurements, Sound Level 22 see the respective sound BNC Meter level meter page. With low-frequency BNC-mini plug Cable CC-24 sound measurement function NL-63 **External device** D-CAR Peripheral devic with 1 BNC ((Comparator Output / Trigger Input cable CC-43CT Rotating light, alarm etc. Computer -USB A-mini B Cable Peripheral device with Sound Level AC Adapter **BNC connector** Meter **NC-98E** NA-28 eripheral devic with _)) BNC co BNC-mini plug Cable CC-24 Meter with separate Level Recorder microphone option LR-07 * For details, see "Condenser Microphone j in the second se đ Computer Combination Examples" Interface Cable 5WKR4030 on page 16. AC Adapter Peripheral device with BNC connector **NC-98E** ₹ n e e PR BNC-BNC Cable NC-39A

PD-

LAN Cable

Data Recorder DA-21 Comment Multi-Channel Signal Analyzer SA-02M/02A4 Portable Multi-Function Measuring System RIONOTE

Peripheral device with BNC connector

Computer

Computer

E9

- m

BNC-BNC Coaxial Cable EC-90A/90B

* For information on comparator output connection, contact RION distributors.

_22

USB A-mini B Cable

)

18

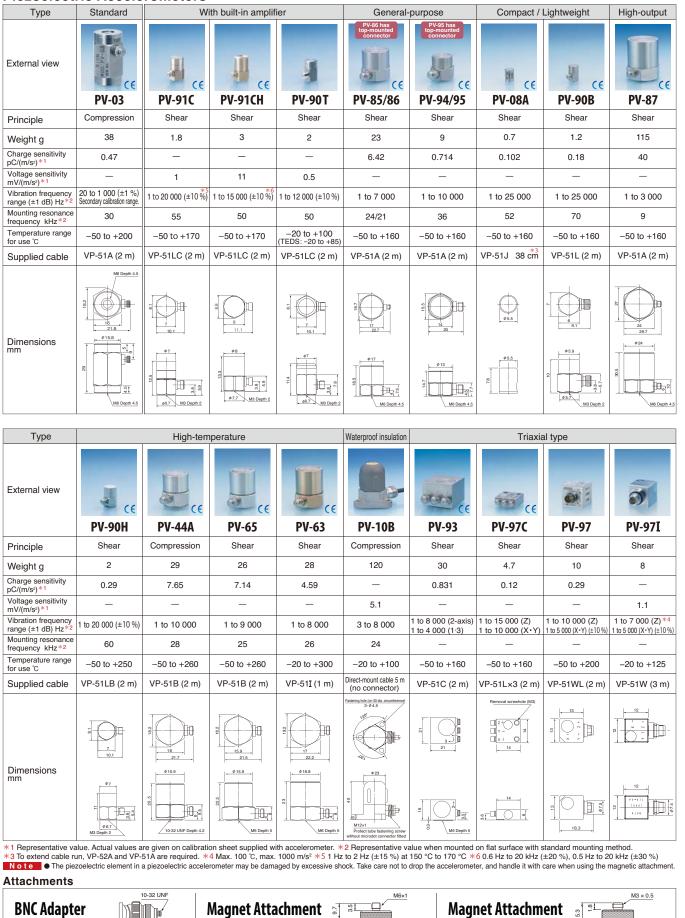
Q

AC Adapter NC-99A

Battery Unit

BP-17

Vibration Meter (Piezoelectric Accelerometers/Servo Accelerometers/Other)


Piezoelectric Accelerometers

Πm

26.7

VP-53S

VP-52C

1.6 g 8.6 dia

5.3

VP-53T

- 16 g

21dia

Vibration Meter

For active contra sensor application		 Capable of measurement in the ultra-lov 100 Hz with flat frequency response Sensitivity and phase characteristics remained 		0 0		
Servo Accelerometer LS-40C	Servo Accelerometer LS-10C	 measurements on large structures in cont Dedicated power supply LF-20 enables data recorder or similar device LS-10C can be directly connected to Vil 	rol systems, ar direct connec	chitecture, civition of accele	il enginee	ering, and machine tool applications
		Specifications LS-40C		Specification	00 1 9 10	
		Maximum measurable acceleration ±20 m/s ²		Maximum measurable		±30 m/s ²
and the second second		Voltage sensitivity 0.5 V/(m/s ²) ±1 % (DC)		Voltage sens		0.3 V/(m/s ²) ±1 % (DC)
		Measurement frequency range DC to 100 Hz (±10 %)		Measurement frequ		DC to 100 Hz (±10 %)
		Power supply voltage ±15 V DC (±11 V to ±18 V)	Power supply		±15 V DC (±11 V to ±18 V)
About States	ANTIN TRANSPORT	Temperature/humidity range for operation -20 °C to $+60$ °C, max. 85		Temperature/humidity ran	-	-20 °C to +60 °C, max.85 %RH
Real Provide P	and the second s	Dimensions, Weight 37 (H) × 37 (W) × 40 (D) mm, approx. 2		Dimensions,		37 (H) × 37 (W) × 40 (D) mm, approx. 220 g (including cable)
Servo		Dedicated power supply for servo	Specifica		1	
		accelerometers	Supplied v	-	±15 V	
Accelerometer		Continuous operation with three LS-40	Output	Using LS-40C	0.5 V/(m	,
Power Supply	a a a		oononing	Using LS-10C	0.3 V/(m	
ower Suppry	0 0 0	units approx. 50 hours, with three	Power			R20 (size D) batteries,
LF-20		LS-10C units approx. 100 hours (using				ter (NC-99A, option)
		alkaline batteries)	Dimension	ns, Weight	140 (H) >	× 240 (W) × 120 (D) mm, approx. 2.7 kg
Reference Piezo Accelerometer PV-03 CE	Electric Story and Story	 Specially designed piezoelectric element construction assure high resistance to e unlike other compression type acceleror Flat response and excellent thermal chat are assured. Only reference accelerometer made in J of using the back to back principle for comparison of using the back to back principle for comparison. 	xternal noise, neters. racteristics apan capable	Charge sens Measuremen frequency ran Maximum me acceleration Dimensions,	t nge easurable	0.47 pC/(m/s ²) (80 Hz) 20 Hz to 1 000 Hz (±1 %), 5 Hz to 10 000 Hz (±1 %), 5 000 m/s ² Approx. 16 (hexagonal width across flats) > approx. 29 (H) mm, approx. 38 g
	Z X	calibration with a wide range of accelero	meters			аррюх. 20 (11) піп, аррюх. 00 g
		calibration with a wide range of accelerc Single-frequency (sine wave) reference source for calibrating piezoelectric accel	vibration erometers	Specification	IS	upper. Le (1) nim, upper. ee g
accelerometers	and	 calibration with a wide range of accelerce Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu 	vibration erometers	Specification Exciter freque		159.2 Hz ±1 %
accelerometers vibration meters	and on-site	 calibration with a wide range of accelerce Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers 	vibration erometers rement	Specification Exciter freque Exciter accel	ency	
accelerometers vibration meters	and on-site	 calibration with a wide range of accelerce Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers Small size and light weight make the un 	vibration erometers rement t easy to	Exciter freque	ency eration	159.2 Hz ±1 %
accelerometers vibration meters Calibration Exci	and on-site	 calibration with a wide range of accelerce Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers 	vibration erometers rement t easy to	Exciter freque Exciter accel	ency eration ity	159.2 Hz ±1 % 10 m/s² (rms) ±3 %
accelerometers vibration meters Calibration Exci	and on-site	 calibration with a wide range of accelerce Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers Small size and light weight make the un carry, and battery powered operation is 	vibration erometers rement t easy to convenient	Exciter freque Exciter accel Exciter veloc	ency eration ity acement	159.2 Hz ±1 % 10 m/s² (rms) ±3 % 10 mm/s (rms) ±4 %
accelerometers vibration meters Calibration Exci	and on-site	 calibration with a wide range of accelercy Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers Small size and light weight make the un carry, and battery powered operation is for mobile use 	vibration erometers rement t easy to convenient	Exciter freque Exciter accel Exciter veloc Exciter displa	ency eration ity acement	159.2 Hz ±1 % 10 m/s² (rms) ±3 % 10 mm/s (rms) ±4 % 10 μm (rms) ±5 %
accelerometers vibration meters Calibration Exci VE-10 (For dynamic for	and on-site	 calibration with a wide range of accelerce Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers Small size and light weight make the un carry, and battery powered operation is for mobile use Servo circuit enables calibration of acce 	vibration erometers rement t easy to convenient	Exciter freque Exciter accel Exciter veloc Exciter displa Dimensions,	ency eration ity acement Weight	159.2 Hz ±1 % 10 m/s² (rms) ±3 % 10 mm/s (rms) ±4 % 10 μm (rms) ±5 % Approx. dia.51×134 (H) mm,
Accelerometers vibration meters Calibration Exci VE-10 CE For dynamic for Force Sensor	and s on-site iter	 calibration with a wide range of accelerce calibration with a wide range of accelerce calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers Small size and light weight make the un carry, and battery powered operation is for mobile use Servo circuit enables calibration of acce up to 70 grams 	vibration erometers rement t easy to convenient lerometers of	Exciter freque Exciter accel Exciter veloc Exciter displa Dimensions,	ency eration ity acement Weight 1S	159.2 Hz ±1 % 10 m/s² (rms) ±3 % 10 mm/s (rms) ±4 % 10 μm (rms) ±5 % Approx. dia.51×134 (H) mm, approx. 600 g (including batteries)
Accelerometers Vibration meters Calibration Exci VE-10 CE For dynamic for Force Sensor	and s on-site iter	 calibration with a wide range of accelerce Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers Small size and light weight make the un carry, and battery powered operation is for mobile use Servo circuit enables calibration of acce 	vibration erometers rement t easy to convenient lerometers of	Exciter freque Exciter accel Exciter veloc Exciter disple Dimensions, Specification Charge sens	ency eration ity acement Weight 1S	159.2 Hz ±1 % 10 m/s ² (rms) ±3 % 10 mm/s (rms) ±4 % 10 μm (rms) ±5 % Approx. dia.51×134 (H) mm, approx. 600 g (including batteries) 4 pC/N (80 Hz)
accelerometers vibration meters Calibration Exci VE-10 CE For dynamic for Force Sensor	and s on-site iter	 calibration with a wide range of accelercy Single-frequency (sine wave) reference source for calibrating piezoelectric accel and vibration meters or vibration measu systems using accelerometers Small size and light weight make the un carry, and battery powered operation is of for mobile use Servo circuit enables calibration of acce up to 70 grams Designed for connection to charge amplication 	vibration erometers rement t easy to convenient erometers of ifier for	Exciter freque Exciter accel Exciter veloc Exciter displa Dimensions,	ency eration ity accement Weight NS IS itivity equency rang	159.2 Hz ±1 % 10 m/s ² (rms) ±3 % 10 mm/s (rms) ±4 % 10 μm (rms) ±5 % Approx. dia.51×134 (H) mm, approx. 600 g (including batteries) 4 pC/N (80 Hz) e 2 Hz to 10 000 Hz (±1 dB)
For calibration c accelerometers vibration meters Calibration Exci VE-10 CE For dynamic for Force Sensor PF-31	and s on-site iter	 calibration with a wide range of accelerce calibration with a wide range of accelerce calibrating piezoelectric accelerce and vibration meters or vibration measu systems using accelerometers Small size and light weight make the un carry, and battery powered operation is for mobile use Servo circuit enables calibration of acce up to 70 grams Designed for connection to charge ample dynamic force measurements 	vibration erometers rement t easy to convenient lerometers of ifier for i into an	Exciter freque Exciter accel Exciter veloc Exciter disple Dimensions, Specification Charge sens Measurement fre	ency eration ity acement Weight IS itivity equency range iorce range	159.2 Hz ±1 % 10 m/s ² (rms) ±3 % 10 mm/s (rms) ±4 % 10 μm (rms) ±5 % Approx. dia.51×134 (H) mm, approx. 600 g (including batteries) 4 pC/N (80 Hz) e 2 Hz to 10 000 Hz (±1 dB)

For mechanical impedance measurements

Impedance Head PF-60A

Integrated accelerometer and force pickup configured as impedance head

 Unit is inserted between vibrator and specimen, and excitation is applied. Signals from accelerometer and force pickup are input to an analyzer for determining mechanical impedance.

Specifications

Sensitivity

Specificat	ions	
Charge	Accelerometer	3.20 pC/N (80 Hz)
sensitivity	Force sensor	260 pC/N (80 Hz)
Measuremen	nt frequency range	1 Hz to 10 000 Hz (±1dB)
Maximum mea	surable acceleration	5 000 m/s ²
Maximum n	neasurable force	1 000 N
Dimension	ns, Weight	Approx. 16 (hexagonal width across flats) >
		approx. 32 (H) mm, approx. 37 g
	Charge sensitivity Measuremen Maximum mea Maximum n	Specifications Charge Accelerometer sensitivity Force sensor Measurement frequency range Maximum measurable acceleration Maximum measurable force Dimensions, Weight

1 mV/pC

For extension between accelerometer and vibration meter

Vibration Meter Preamplifier **VP-26A**

- Prevents sensitivity degradation by accelerometer cable Prevents increase in external noise
- Suitable for low-output accelerometers

Extension examples

Piezoelectric accelerometer VP-26A (6-pin)

0.16 Hz to 30 kHz Frequency range Extension cable EC-02S series

Vibration Meter VM-83 / UV-15

VP-42

Support for CCLD (Constant Current Line Drive)

Charge Converter (For direct connection to BNC input)

)	-	_	
		-	

Charge Converter (Compact relay type) VP-42

 1 10 -	-0	110	-
RI	WY		

(RIC	N VP-E	1	•

	accelerometer with charge
	Connection example
	Piezoelectric accelerometer
. 0111	
H-LL	Piezoelectric accelerometer

Simplifies the configura measurement system u accelerometer with character	sing a piezoelectric	G
Connection example	Connection cable	

ection ca

VP-51 serie

on of a vibration		VP-40	VP-42
ing a piezoelectric	Gain	1 mV/pC ±2.5 % (80 Hz)	1 mV/pC ±2.5 % (80 Hz)
le output	Frequency range	1 Hz to 30 kHz (±5 %)	1 Hz to 30 kHz (±5 %)
Connection cable	VD 40		

Specifications

able					
es	VP-40			-	RIONOTE,
able		Connection cable	BNC adapter	_	SA-02,DA-21,
es	VP-42	VP-51A series	VP-52C		VA-12,VM-82A
	VP-42	Can be extended up to 100 m	VF-52C		1A 12,710-02A

7	n
Z	U
_	-

Vibration Meter (Tri-axial Groundborne Vibration Meter)

Specifications

Applicable standards

Measurement functions

Measurement values

In accordance

In accordance

In accordance

Waveform recording (Option)

analysis value (Option) Measurement frequency range

Measurement range

1/3 octave band

Measurement range

for VM-56

Store modes

Power requirements

Dimensions and weight

Waveform recording program

1/3 octave band analysis program

SD card (512 MB, 2 GB, 32 GB)

VX-56RT

Waveform Analysis Software for Groundborne Vibration AS-70GV

Battery life

AC adapter

Accelerometer

Acceleromete

(Cable: 1.5 m)

Tri-axial

PV-83D

Options

with SBR Others

with DIN

with ISO

NC-98E

VP-54D

VP-54L

EC-04 series

Simultaneous measurement of multiple parameters including PPV and VDV Simultaneous calculation of the measurement quantities defined by DIN 45669-1, ISO 8041 and other international standards

SD-CARD Memory card compatible model For details, see "Memory Card" on page 15.

Tri-axial Groundborne Vibration Meter VM-56 (€

Simultaneous measurement of multiple parameters including PPV and VDV.

User definable PPV vs Frequency comparator output supports DIN 4150: Part 3 and other frequency-dependent PPV building damage criteria.

Simultaneous tri-axial measurement. Compact and lightweight design

Flexible product configuration with waveform recording function and 1/3 octave band analysis function available as optional programs.

Data stored as CSV files on an SD card.

Suitable for use in a live-to-web system (please contact us for further details).

Waveform Recording Program VX-56WR

Allows recording vibration waveforms on SD card as WAV files. The recording process is carried out simultaneously with the standard VM-56 functions.

2 kHz sampling with 24 bit or 16 bit can be selected Max. recording time (at 16 bit)

pling frequency	512 MB	2 GB	32 GB
2 kHz	Approx. 6 hours	Approx. 27 hours	Approx. 470 hours

Waveform Analysis Software for **Groundborne Vibration** AS-70GV

Samp

Allows use of WAV files recorded with VM-56 + VX-56WR for graph display, level processing, frequency analysis (octave band analysis / FFT analysis), recalculation (PPV, KB, VDV), and file output.

dare -					
		-			
	Part Part Internet	latine. In		The Control of Control	
	-	1.			
	10 mm		the second second	Country 1	_

frequency, VDV, MTVV). 100.2 Can be used concurrently with VX-56WR. 1/3 Octave Band Analysis screen

Mounting options **DIN Plate**

DIN 45669-1: 2010-09 (Frequency, Measurement range compliance), SBR Meten en beoordelen van trillingen, Deel A: Schade aan gebouwen 2010, Deel B: Hinder voor personen 2013, ISO 8041: 2005, ISO 8041-1: 2017, CE marking, WEEE directive

Tri-axial simultaneous measurement

Peak particle velocity |v|max (PPV)

Weighted vibration maximum value KBEmax Maximum KB_F value over 30-second KB_{FT}

Corrected acceleration effective value Acc

Maximum transient vibration value MTVV

Maximum weighted vibration value veff, max

Time waveform of acceleration signal a(t)

Time-weighted time average, maximum acceleration Band maximum OA for 3 axes combined Law

Measurement frequency setting is 1 to 80 Hz, defining the following range

Vibration velocity: 0.02 to 100 mm/s (Frequency bandwidth 1 to 80 Hz)

24 hours or more, constant operation *Battery life will differ depending on settings.

Approx. 175 mm (H) x 175 mm (W) x 40 mm (D) mm, approx. 780 g (incl. batteries)

Dimensions and weight: Approx 67 mm (dia.) x 50.5 mm (D), approx. 450 g

AC adapter

DIN plate

L-bracket

7P Extension Cable

100

82.0

3 modes (Manual, Auto, Timer Auto), Data format: CSV

Usage temperature range: -20 °C to +60 °C (no condensation)

IEC R6 (size AA) battery x 8 or external power supply

Weighted vibration amount: 0.02 to 100 mm/s (Reference 16 Hz) Maximum absolute waveform value: 0.05 to 100 mm/s (Reference 16 Hz)

Maximum veff over 30-second cycle veff, max, 30

Dominant frequency fmg (D.F.)

Vibration dose value VDV Crest factor C.F.

Displacement (0-p value) Disp.

0.5 Hz to 315 Hz

NC-98E

Combined PPV for 3 axes PVS

Vibration velocity: 0.03 to 100 mm/s

Rated sensitivity: 60 mV/(m/s2)

Waterproofing: IPX7

Enables measurement

broadband parameters

VP-54D

acceleration levels

simultaneously with

(e.g. PPV, dominant

and logging of 1/3 octave

Frequency range: 0.5 Hz to 315 Hz

VX-56WR

VX-56RT

1/3 Octave Band Analysis Program

Vibration acceleration: 0.0003 to 10 m/s² Displacement (0-p): 0.01 to 10 mm (0.5 to 4 Hz) Measurement range compliant with SBR-Deel B

L-bracket VP-54L

Vibration Meter (Vibration Level Meter/3-Axis Vibration Meter)

Simultaneous measurement in three axes of the instantaneous value for vibration level and vibration acceleration level, as well as the time percentile level, time averaged level, maximum and minimum values

Compliant with the Japan Measurement Act and JIS C 1510: 1995 and JIS C 1517: 2014

		Specifications		
WRIER	SD-CARD Memory card	Applicable standards	Weight and Measure Act (Vibration Le	vel Meters) JIS C 1510:1995, JIS C 1517:2014
	compatible model		CE marking, WEEE Directive, Chinese	e RoHS (export model for China only)
	For details, see "Memory Card" on page 15.	Measurement functions	3-axis simultaneous measurement sup	pported
PR ST			Vibration level Lv and vibration acceler	ation level Lva
JISTAL	Designated manufacturer of special		Maximum value hold for vibration level	and vibration acceleration level
	measurement instrument	Processing	Time average level Leq for vibration level	vel and vibration acceleration level
Vibration	Designation number: 351301	measurement	Time percentile level L5, L10, L50, L90,	L95 for vibration level and vibration acceleration level
	Type certification number	(processing values)	Maximum value Lmax for vibration leve	I and vibration acceleration level
Level Meter	(The Japan Measurement Act): TW161		Minimum value Lmin for vibration level	and vibration acceleration level
		Measurement frequency range		
VM-55 🤇 🖌 📕	NUT	Vibration level	1 to 80 Hz	
VM-55 (€		Vibration acceleration level	1 to 80 Hz	
	VIEWTONLING ACTOR VM-55 7	Measurement level range		
	An and a second second	Vibration level, vertical direction	25 to 129 dB	
	48.3.	Vibration level, horizontal direction	30 to 122 dB	
	w 45.4	Vibration acceleration level	30 to 129 dB	
	Victore units WHO SALATION AND INCOME	Store modes	3 modes: Manual, Auto*, Timer Auto*	
		Power supply	IEC R6 (size AA) battery x 8 or external power supply	
		AC adapter	(NC-98E option), Battery pack (BP-21)	A option)
			Options	* VX-55EX is required separately
		and the second second	Memory Card (512 MB SD card)	MC-51SD1
			Memory Card (2 GB SD card)	MC-20SD2
		THE STATE COLLET	Memory Card (32 GB SD card)	MC-32SP3
			Specifications Triaxial Accelerom	eter PV-83C (supplied)

Simultaneous measurement of vibration level (L_{v}), and vibration acceleration level (L_{va}) Support for high capacity SD cards up to 32 GB (Measurement data are output as CSV

files, which can be handled by spreadsheet software such as Excel.) 27 hours of measurement operation with IEC R6 [size AA] batteries (alkaline or nickel-hydride rechargeable)

Dust and water proofing IP54 rating (for main unit)

Adds a number of programs.

Extended Function Program VX-55EX

The VX-55EX program is supplied on a 512 MB SD card. After installation, the card can be used as a 512 MB SD memory card.

When the VX-55EX program has been installed *, the VX-55WR and VX-55RT can be added. *Once installed, the VX-55EX cannot be uninstalled

Functions: Auto store function (instantaneous value / processing values) / Marker function / Comparator function / Continuous data output function

Waveform Recording Program

The VX-55WR program is supplied on a 2 GB SD card. After installation, the card can be used as a 2 GB SD memory card.

VX-55WR Enables simultaneous vibration level processing and waveform recording. Recorded data can be analyzed on a computer, for example to perform frequency analysis. (Non-compressed WAVE files

1 kHz sampling. 24 bit or 16 bit selectable.					
Max. recording time (at 1	Max. recording time (at 16 bit)				
Memory card Sampling frequency	512 MB	2GB	32GB		
1 kHz	Approx. 13 hours	Approx. 55 hours	Approx. 950 hours		

Adds support for handling data measured with VM-55 to AS-60

Data Management Software for Environmental Measurement (Includes the vibration level data management software) AS-60VM

Supported mo	dels
VM-55/53A*	*Auto store data only
See p. 9 for A	AS-60 specifications

Vibration Calibrator for Vibration Level Meter **Inspection and Calibration** Vibration Calibrator

VP-33A

Sensitivity

Waterproofing specifications

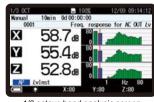
Dimensions, Weight

Temperature range for operation

6.3 Hz ± 2 %
97 dB ± 0.5 dB (0 dB = 10-5 m/s ² (rms))
1 m/s ² ± 0.06 m/s ² (peak)
Max. 5 % (Frequency range: 1 Hz to 100 Hz)

60 mV/(m/s2)

-10 °C to +50 °C


JIS C 0920, class 7 (sealed)

Approx. dia. 67 × 41 (H) mm, approx. 335 g

1/3 Octave Real-time **Analysis Program** VX-55RT

The VX-55RT program is supplied on a 512 MB SD card. After installation, the card can be used as a 512 MB SD memory card.

Enables real time 1/3 octave band analysis Saved analysis results can be reloaded later for display.

1/3 octave band analysis screen

Adds support for handling data measured with VM-55 +VX-55VM + VX-55RT to AS-60 **Data Management Software for Environmental**

Measurement (Includes the 1/3 octave data vibration level data management software)

AS-60VMRT

Signal outputs for 3 directions allow connection of frequency analyzer and waveform recording on data recorder

3-Axis Vibration Meter VM-54 (6

- Can be used with a variety of accelerometers and vibration pickups to configure a 3-axis acceleration measurement system
- Various modes can be implemented by installing the respective software from program cards

Inputs	3 channels (with 3-channel vibration
	input preamplifier)
Measurement frequency range	0.5 Hz to 5 000 Hz
Measurement mode	Acceleration m/s ²
(instantaneous 3-axis value)	
Outputs	Separate AC outputs for 3-axis signals
Power	Four IEC R14 (size C) batteries,
	continuous operation 16 hours
Temperature/humidity	−10 °C to +50 °C,
range for operation	max. 90 %RH
Dimensions, Weight	56 (H) × 200 (W) × 175 (D) mm,
	approx. 1 kg (including batteries)

- Sub screen Functions as a memory card and allows storing FFT analysis result data in CSV format
- Supplied Excel macro makes it easy to generate a graph display from stored data (VX-54WS, VX-54WB, VX-54WH FFT analysis also supported)

Vibration measurement system for evaluating comfort in passenger vessels and merchant vessels

Measure and evaluate vibrations occurring in crew and passenger accommodation sections Marine Vibration Card VX-54WS (for floor positioning, supplied), 3-Axis Vibration Meter VM-54, and Marine Vibration Card **VX-54WS** Measurement data can be stored on memory card (CF card)

Specifications	
Applicable standards	ISO 20283-5: 2016, JIS F 0907: 2003
Input	Piezoelectric Accelerometer PV-83CW (triaxial), Piezoelectric Accelerometer PV-57A (single axis, option)
Measurement frequency range	1 Hz to 80 Hz (with FLAT characteristics of PV-57A up to 1 kHz)
Frequency weighting	Wm (ISO 2631-2: 2003, bandwidth limiting characteristics)
Processing functions	RMS, max (MTVV), min
Measurement time settings	10 sec, 1 min, 2 min, 10 min
* Power requirements	s temperature/humidity range for operation, dimensions and weight same as for VM-54

of ships, to evaluate suitability and comfort according to ISO 20283-5: 2016, JIS F 0907

Evaluate vibrations affecting the whole body

Whole Body Vibration Card Whole-body vibration measurement system consists of Seat **VX-54WB1**

Hand-Arm

Measurement data can	be stored on memory card (CF card)
Specifications	
Applicable standards	ISO 2631-1: 1997, ISO 2631-2: 2003, ISO 8041: 2005, JIS B 7760-1: 2004, JIS B 7760-2: 2004
Input	Seat Accelerometer PV-62 (triaxial), Piezoelectric Accelerometer PV-83CW (triaxial)
Measurement frequency range	0.5 Hz to 80 Hz
Frequency weighting	Wk, Wd, Wb, Wc, Wj, Wm, Wg, bandwidth limiting characteristics
Processing functions	RMS, MTVV, VDV, Synthesized Value, PEAK, Crest Factor
Measurement time settings	1 sec to 30 sec in 1-sec units 1 min, 10 min, 30 min, 1 hour, 4 hours, 8 hours, 12 hours (max. 12 hours)

* Power requirements, temperature/humidity range for operation, dimensions and weight same as for VM-54

Evaluate vibrations transmitted through hands and arms

Measure and evaluate vibrations as specified in ISO 2631

Measurement Accelerometer PV-62, 3-Axis Vibration Meter

and JIS B 7760 regarding vibration perception

VM-54, and Whole Body Vibration Card

Measure and evaluate exposure to hand-arm vibrations as specified in ISO 5349-1, ISO 5349-2, JIS B 7761-1, JIS B 7761-2 Vibration Card Hand-arm vibration measurement system consists of Accelerometer PV-97C,

3-Axis Vibration Met Measurement data of	PV-97I 🎯	
Specifications		For specifications, see page 19.
Applicable standards	ISO 5349-1: 2001, ISO 5349-2: 2001, ISO 8041: 2005, JIS B 7761-1: 2004,	JIS B 7761-2: 2004, JIS B 7761-3: 2007
Input	Piezoelectric Accelerometer PV-97C/97I (triaxial), etc	
Measurement frequency range	8 Hz to 1 000 Hz	
Frequency weighting	Wh	

	0. O.A. Value Galduated Holli
	frequency domain (FFT result)
	* Partial overall value for specified frequency range can also be calculated.
Display functions	Dependent on respective program card
Measurement channels	X, Y, Z (3 channels simultaneous analysis)
Window types	Hanning, Rectangular

Max. 50 files

3-ch Preamplifier

Switch-selectable input (for 3 channels together)

1. FFT processed spectrum display 2. Effective value (O.A.) calculated from time domain

Instantaneous value, RMS method, maximum value

3-channel FFT spectrum data stored in CSV format

Max. 100 data sets per file (3-channel data form 1 set)

Manual store on VX-54FT card

3. O.A. value* calculated from

Charge amplifier x1: Sensitivity 1 mV/pC Charge amplifier x1/10: Sensitivity 0.1 mV/pC

CCLD

VP-80

Specifications Input selection

Available settings

Specifications Display items

Analysis lines 400

Processing

Data store

function

PV-83CW (6

(supplied

m	0	88:0	1808 8
M		300	108.10
W ^B		388	102.32
10		388	146.68
	Contraction of the local division of the loc	Cond 2	100/02

Graphic screen

(: Wd 2MS	Y:Wd Z:Wk 1m 11/17 22:23:34
X	0.1522 m/s2
YZ	0.1437 m/s2 1.0226 m/s2

00:00:10

Numeric screen

FFT screen (using VX-54FT)

Charge sensitivity 3.5 pC/(m/s²) (16 Hz) Measurement frequency range 1 Hz to 100 Hz (±0.5 dB)

mber of components 3 axes

Disc-shaped tri-axial accelerometer for whole-body vibration measurement and evaluation according to ISO 2631

Seat Accelerometer

PV-62 (6

Processing functions RMS, MTVV, VDV, Synthesized Value, PEAK, Crest Factor Measurement time settings 1 sec to 30 sec in 1-sec units 1 min, 10 min, 30 min, 1 hour, 4 hours, 8 hours, 12 hours (max. 12 hours) * Power requirements, temperature/humidity range for operation, dimensions and weight same as for VM-54

Vibration Meter (General-Purpose Vibration Meter/Vibration Analyzer)

Simply press against the measurement object **Pocketable Vibration Meter (RIOVIBRO)** VM-63C CE

- Ultra compact vibration meter with integrated accelerometer. Weighs only 200 g and easily fits into a pocket.
- Designed for quick and easy use in the field
- Suitable for preventive maintenance of industrial equipment, on-site quality control, product development, and many other applications

Specifications			
Measurement range			
Acceleration		0.1 to 199.9 m/s ² EQ PEAK (RMS x √2)	
	Velocity	0.1 to 199.9 mm/s RMS	
	Displacement	0.001 to 1.999 mm EQ P-P (RMS x 2√2)	
Display		3 1/2 digits, digital (LCD)	
Power supply		IEC R6 (size AA) batteries (alkaline / manganese or	
		nickel-hydride rechargeable batteries) x 2,	
		About 50 h continuous use	
Dimensions and weight		Approx. 178 (H) x 64 (W) x 27 (D) mm, approx. 200) g
		Options	
		Attachment (L)	VP-53Y
		Earphone	VP-37

Convenient 3-mode measurement for acceleration, velocity, and displacement with storage capacity for up to 1000 data

General-Purpose Vibration Meter

VM-82A (E Designed mainly for maintenance and inspection of industrial machinery, with particular emphasis on rotational machinery Acceleration, velocity, and displacement can be easily measured using a suitable frequency range, allowing comprehensive and precise evaluation of machine vibrations. Specifications Measurement range (Using Shear-type Piezoelectric Accelerometer PV-57I, supplied) Acceleration 0.02 m/s² to 200 m/s² EQ PEAK 1 Hz to 5 kHz Velocity 0.3 mm/s to 1 000 mm/s BMS 3 Hz to 1 kHz 0.1 mm/s to 1 000 mm/s BMS 10 Hz to 1 kHz Displacement 0.02 mm to 100 mm EQ PEAK 3 Hz to 500 Hz VM-82/ RATION METE 0.001 mm to 100 mm EQ PEAK 10 Hz to 500 Hz 18:25 4111 Output AC output, DC output FS100 Power Four IEC R6 (size AA) batteries AC adapter (NC-98E, option) Dimensions, Weight Approx. 171.5 (H) x 74 (W) x 25.5 (D) mm, 50 m/s Approx. 270 g (including batteries) RMS No. 00 1 Options Charge converter VP-40 20 kHz 3н Charge converter VP-42 BNC-RCA output cable CC-24 V

Portable vibration analyzer for equipment diagnosis and on-site measurements Vibration Meter VA-12 with FFT analysis function

Vibration Analyzer

Vibration Meter Mode Allows simultaneous measurement of

Allows simultaneous measurement of acceleration, velocity, displacement, and acceleration crest factor

FFT Analyzer Mode

- Real-time analysis frequency 20 kHz
- Time waveform display and spectrum display with up to 3 200 spectral lines. Envelope processing also supported.
- Vibration waveform data recording function (10 seconds at analysis frequency 20 kHz)
- Data stored in WAVE file format on memory card (SD card). Timer controlled automatic measurement

Menu Mode

The color TFT display (240 x 320 dots) is easy to read, whether outdoors, indoors, or in a dark location.

Specifications

pecifications					
tandard compliance	CE marking (EMC Directive 2004/108/EC)				
	Chinese RoHS (export model for China only)				
	WEEE Directive				
nput section					
Number of measurement	1				
channels					
Connector type etc.	BNC, CCLD 18 V 2 mA, (CCLD24 V 4 mA available as factory option)				
Sensor	Piezoelectric Accelerometer PV-57I (supplied)				
Input range					
At sensitivity 1.00 to 9	0.99 mV/(m/s ²), using PV-57I				
ACC (Acceleration)	1, 3.16, 10, 31.6, 100, 316, 1 000 m/s ² (rms)				
VEL (Velocity)	3.16, 10, 31.6, 100, 316, 1 000, 3 160 mm/s (rms)				
DISP (Displacement)	0.089, 0.283, 0.894, 2.83, 8.94, 28.3, 89.4 mm (EQp-p)				
Measurement range (usir	ng PV-57I, High-pass filter 3 Hz, Low-pass filter 20 kHz)				
ACC (Acceleration)	0.02 to 141.4 m/s ² (rms) Continuous measurement, 1 Hz to 5 kHz				
Instantaneous	700 m/s ²				
maximum acceleration					
VEL (Velocity)	0.2 to 141.4 mm/s (rms) at 159.15 Hz				
DISP (Displacement)	0.02 to 40.0 mm (EQp-p) at 15.915 Hz				
Measurement frequency	range (electrical characteristics)				
ACC (Acceleration)	1 Hz to 20 kHz				
VEL (Velocity)	3 Hz to 3 kHz				
DISP (Displacement)	3 Hz to 500 Hz				
Acceleration envelope curve	1 kHz to 20 kHz				
Filters					
Prefilters					
High-pass filter	1 Hz (acceleration only), 3 Hz, 10 Hz, 1 kHz (-10 % point), cutoff slope -18 dB/oc				
Low-pass filter	1 kHz, 5 kHz, 20 kHz (-10 % point), cutoff slope -18 dB/oct				
Acceleration envelope	e curve filter				
High-pass filter	1 kHz (-10 % point), cutoff slope -18 dB/oct				
ibration meter mode					
ACC (Acceleration)	m/s ² rms value, waveform peak value, crest factor				
VEL (Velocity)	mm/s rms value				
DISP (Displacement)	mm EQp-p				
FT mode	Time waveform, spectrum, Acceleration envelope curve				
Analysis points	512, 1 024, 2 048, 4 096, 8 192 (3 200 lines)				
Time window functions	Rectangular, Hanning, Flat-top				
	Rectangular, Hanning, Flat-top Linear average, maximum, exponential averaging, instantaneous value				
Processing	100 Hz, 200 Hz, 500 Hz, 1 kHz, 2 kHz, 5 kHz, 10 kHz, 20 kHz				

٢r	rigger							
	Trigger so	urce						
	Externa	al signal	Triggered at falling edge of signal at external trigger input					
	Input le	vel	Triggered when time waveform crosses a preset level					
			Trigger level can be set in steps of 1/8 of full scale on one-sided amplitude					
	Trigger op	eration						
	Free-ru	n	Processing always carried out, regardless of trigger condition					
	Repeat		Processing carried out whenever triggering occurs					
	Single		Processing carried out once only when triggering occurs Data are stored according to the setting of Trigger Start Time,					
	Time							
			Store Interval, Store number.					
N	emory							
	Memory m	iedia	SD cards (max. 2 GB)*					
	Store files		Sets of measurement values and parameters can be stored on memory card					
			1 000 data saved as one store name. Max. number of store names: 100					
	Parameter	setting	Up to 5 parameter sets can be stored in unit					
	memory		Parameter settings can be stored on memory card					
	Wave files		Up to 10 seconds per file (frequency range 20 kHz)					
			Vibration waveform recorded during FFT processing					
			available when using a computer.					
	BMP files		Screen capture can be saved as BMP files.					
	Recall fund	ction	Measurement data can be read from memory card and redisplayed on screen					
n	put/output s	ection						
	Trigger inp	ut connector	TTL level, BNC-mini plug, 2.5 mm dia. (for CC-24)					
	USB port	Removable	Removable storage device class					
		disk function						
5	ower							
	DC12 V (1	1 to 15 V)	AC adapter NC-99A, eight IEC R6 (size AA) batteries					
	Battery life	•	Approx. 12 hours (23 °C, normal operation, backlight off)					
Di	imensions, V	Veight	213 (H) x 105 (W) x 36 (D) mm (without protective cover),					
			approx. 850 g (incl. batteries, with protective cover, PV-57I connected)					
1			 Be-analysing is available on the computer 					

· Re-analysing is available on the compute
--

Wave Analysis Software	AS-70	Charge converter	VP-40
Waveform Analysis Software	CAT-WAVE	SD-CARD 512 MB*	MC-51SS1
Piezoelectric accelerometer	Various	SD-CARD 2 GB*	MC-20SS2
BNC Adapter	VP-52C		

Vibration Meter (Vibration Meter Unit/2-Channel Charge Amplifier/General-Purpose Vibration Meter)

Flexible unit configuration allows simultaneous sound and vibration measurement

Vibration Meter Unit

UV-15 (E TEDS compliant

Vibration Meter Unit UV-15 and Sound Level Meter Unit UN-14 can be linked in a measurement system with up to 16 channels

- Supports connection of piezoelectric accelerometers, accelerometers with integrated preamplifier, and TEDS compliant accelerometers
- Display shows parameters, measurement value, and bar graph indication
- Linking with Interface Unit UV-22 allows setup and control from a computer, and transfer of measurement values
- Backlit LCD and LED warning indicators
- Optional CF-27 base allows JIS standard rack mounting
- Can be powered from AC adapter or Battery Pack Unit BP-17

Specifications

Inputs	Microdot connector	For piezoelectric acce	lerometer (Maximum input charge 100	000 pC)					
	CCLD	Accelerometer with int	egrated preamplifier (24 V 4 mA)						
	(Constant Current Line Drive)	Accelerometer with TE	Accelerometer with TEDS compliant integrated preamplifier (24 V 4 mA)						
	7-pin preamp connector	For piezoelectric acce	lerometer connected via preamplifier (VP-26A)					
	(Connector type PRC-03)	(Maximum input voltage ±10 V)							
Measurement	Acceleration (ACC)	1 Hz to 15 kHz (AC out	tput tolerance ±5 %), 0.5 Hz to 30 kHz	(AC output tolerance 10 %)					
frequency Velocity (VEL) 3 Hz to 3 kHz (AC output tolerance ±5 %)									
range	Displacement (DISP)	3 Hz to 500 Hz (AC output tolerance ±10 %)							
Filters	HPF (attenuation -18 dB/oct)	3, 5, 10, 15, 20, 30, 50, 100, 150, 200 Hz, Off							
	(-10 % drop)	(User filter supported v	with UV-22)						
	LPF (attenuation -18 dB/oct)	300, 500, 1 k, 1.5 k, 2 k, 3 k, 5 k, 10 k, 15 k, 20 kHz, Off							
	(-10 % drop)	(User filter supported with UV-22)							
Power		9 V to 15 V DC, suitable AC adapter NC-99A, Battery Pack Unit BP-17,							
		Cigarette plug adapter CC-82 (option, up to 16 units*)							
		*Depending on car battery capacity							
Dimensions	s, Weight	150 (H) × 36 (W) × 179 (D) mm (not including protruding parts), approx. 500 g							
Options									
Piezoelectr	ic accelerometer	Various	Vibration Meter Preamplifier	VP-26A					
Accelerom	eter cable	Various	Vibration Level Meter/Vibration	EC-02S (3 m and up)					
BNC-BNC		NC-39A	Accelerometer Cable						

Dedicated interface unit for UN-14 / UV-15 **Interface Unit** UV-22 (€

USB and Ethernet interface provide flexible connectivity for controlling UN-14 and UV-15 units via commands sent from a computer

- Supplied UV-22Viewer software allows UN-14 and UV-15 setup, measurement value checking, and user-specified cutoff frequency setting for HPF and LPF (user filter*) on the computer
- Master/Slave function simplifies measurement operation when multiple UN-14/UV-15 units are connected

%2-Channel Charge Amplifier UV-16 cannot be connected.

* Can be set in 1/3 octave band steps within the specified frequency range

Specifications

ETHERNET

EZG

Rear View

specifications						
Settings control (for UN-14 and UV-15)	Input selection, sensitivity, HPF, LPF, user filter					
UN-14 only	Frequency weighting, level range, time weighting					
UV-15 only	Measurement mode, range, display characteristics					
Measurement values	UN-14: instantaneous value every 100 ms, maximum value, Peak, Leg					
	UV-15: instantaneous value every 100 ms, maximum value, ±Peak					
UN-14/UV-15 interface						
Number of supported unit connections	Up to a combined total of 16 UN-14/UV-15 units					
Computer interfaces						
USB	USB 1.1 (one UV-22 per computer supported)					
Connector	Mini B					
Ethernet	10/100 Base-TX (one UV-22 per computer supported)					
Temperature/humidity range for operation	-10 °C to 50 °C, max. 90 %RH					
Power	9 V to 15 V DC, suitable AC adapter NC-99A, Battery Pack Unit BP-17,					
	Cigarette plug adapter CC-82 (option, up to 16 units*)					
	*Depending on car battery capacity					
Current consumption	Approx. 240 mA (12 V DC, LAN operating)					
Dimensions, Weight	150 (H) × 36 (W) × 179 (D) mm, approx. 500 g					
Supplied accessories	UV-22 Viewer software × 1 (CD-ROM), USB cable					

UV-22 Sound and Vibration Monitoring System CAT-UV22-MS

Front View

- The system enables you to monitor or record the time data for sound and Vibration that are measured by using UN-14 or UV-15.
- Up to 16 UN-14 or UV-15 units can be connected to UV-22, allowing you to use the system to perform multipoint measurements.

or the state to be the		58	1 m ii		a Rest of	C				-
hereiter in hereiter	Bally Sell		1	balland in		The Party Party	_		-	_
H A			-		-	1.100 ····	- 1)	10.11	10	
the put the state in	and the second second		100			Processing Aller	Bd Said			
AND ADDRESS OF ADDRESS	and the second s	and the second s	00	Server Box	Aver	Fight Brokening	4.4	land		
which and all all all all date to	to have not start and why particular to the start	NOT THE MARK SHE SHE ST. ST. &			1.14		1 den 1 m	14441 316.0	 (4) 	
No.	and a state of the	A.F.			CH.C		40.5	18/67 211.0	1 11	
AND A STREET	24.24					C I Marries M		404 112	• •	
100										
140		and the second se								
MY X M	AR									
which als als win als also addition	to the set of the set of	And the second s								
Mid-		March 1 March	10							
and the second se	26.05		(A)							
A CTANE HI	811	164	(A)							
2007-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	2020	364	(4)							
R81 (4.4)	NPC 1	2.1							1	
And an air air air air air air an ann an an ann an ann ann ann ann an	AND OF STATES AND ADDRESS.	and the second s							-	
	and a second sec									
and the second second second			1002						-	
and the second se	100 million 100 mi			10000	100	C & dataset on the				
And the second s				Tare Data 1	110 Bank	C. C. KROMER, Son 12				
XX	322	S11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1								
The second second second second	102	the second s		Jave 1		Lord .				
asterna an the set of a part of	and all out-this warms the second	the state of the state of the state of								
Turt Antoreal II Die Beilarie	-221			Art Belling	-				- 1	-
Gra	ph (All Channel) t	ab				Cont	figur	ation ta	ab	

Measure machine vibrations in power stations, industrial plants, or engines and motors during product development

2-Channel Charge Amplifier UV-16 <€

Image: state of the state of the

Designed for connection of piezoelectric accelerometers or accelerometers with integrated	
preamplifier	

- Link the chassis of up to 16 units to create a multi-channel configuration with up to 32 channels
- JIS standard rack mounting supported (max. 12 units/24 channels)
- Can be powered from an AC adapter or Battery Pack BP-17

Inputs		Piezoelectric accelerometer				
		Accelerometer with int	egrated preamplifier (24 V 4 mA)			
Measurement	Acceleration (ACC)	1 Hz to 15 kHz (AC ou	tput tolerance ±5 %)			
frequency		0.5 Hz to 30 kHz (AC	output tolerance ±10 %)			
range	Velocity (VEL)	3 Hz to 3 kHz (AC out	out tolerance ±5 %)			
	Displacement (DISP)	3 Hz to 500 Hz (AC ou	tput tolerance ±10 %)			
Filters		HPF 10 Hz, LPF 1 kHz compliant with JIS B 0907: 1989 frequency response				
		compensation filter characteristics				
	HPF	OFF, 10 Hz, 20 Hz, 50 Hz				
	LPF	1 kHz, 3 kHz, 10 kHz, OFF				
Power		9 V to 15 V DC, suitable AC adapter NC-99A, Battery Pack Unit BP-17,				
		Cigarette plug adapter CC-82 (option, up to 16 units*)				
		*Depending on car ba	attery capacity			
Dimensions, W	/eight	150 (H) × 36 (W) × 17	9 (D) mm (not including protruding parts)	, approx. 500 g		
			Options			
			Piezoelectric accelerometer	Various		
			Accelerometer cable	Various		
			BNC-BNC Cable	NC-39A		

Link to UV-15/UV-16/UN-14 to provide power for mobile measurement (Required one of sources listed below)

Battery Unit BP-17 €€

Example for linkup with UV-15 units

- Battery power can be used to drive up to three units
- (AC adapter connection allows connection of 1 to 16 units)
- Holds eight IEC R14 (size C) batteries
- Continuous operation time: approx. 8 hours (with alkaline batteries, using UV-15/UN-14) approx. 17 hours (with alkaline batteries, using UV-16)
- #3 linked units, ambient temperature 25 °C, with CHARGE setting, normal operation. Actual time will differ depending on ambient conditions and operation settings.

AC Adapter NC-99A

Rack Mounting Base CF-27 (JIS compliant)

100 V to 240 V AC, 12 V DC

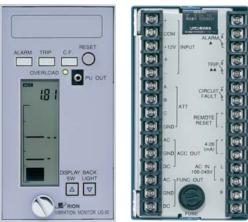
Dimensions; 149 (H) × 480 (W) × 320 (D) mm

Supports connection of Servo Accelerometer LS-10C for 3-mode measurement of acceleration,

velocity, and displacement

General-Purpose Vibration Meter

- Measure and evaluate vibrations using a piezoelectric accelerometer or the Servo Accelerometer LS-10C (With optional servo accelerometer LS-10C, even very low frequency vibrations from 0.1 Hz upwards can be measured.)
- Display characteristics can be switched to rms, equivalent peak, and equivalent peak-to-peak, with maximum value hold and peak hold capability


Specifications

Specifications						
Vibration frequency	Piezoelectric	ezoelectric Acceleration 1 H				
range	accelerometer	Velocity	1 Hz to 3 Hz ±10 %,	3 Hz to 3 kHz ±5 %		
		Displacement	1 Hz to 3 Hz ±20 %,	3 Hz to 500 Hz ±10 %		
	Servo	Acceleration	0.1 Hz to 100 Hz ±5	100 Hz ±5 %		
acceleromete		Velocity	0.1 Hz to 0.3 Hz ±10 %, 0.3 Hz to 100 Hz ±5 %			
		Displacement	0.1 Hz to 0.3 Hz ±20	%, 0.3 Hz to 100 Hz ±10 %		
Power			Four IEC R14 (size C) batteries,			
			AC adapter (NC-98E	, option)		
Dimensions, Weight			171 (H) × 120 (W) × 2	234 (D) mm, approx. 1.8 kg		
	Options					
	Vibration level r	neter/vibration ac	celerometer cable	EC-02S series (3 m and up)		
	Vibration Meter	Preamplifier		VP-26A		
	Interface cable			5WKR4030		

Vibration Meter (Vibration Monitor)

Monitor machine vibrations in power stations, industrial plants, or production facilities

Vibration Monitor UG-50

Front View

Rear View

For enhanced connection flexibility between piezoelectric accelerometer and vibration monitor

Preamplifier UG-20 Preamplifier UG-21 Charge amplifier for cable runs up to 300 meters

4-20 mA current output

* Factory option

Junction box preamplifier for cable runs up to 400 meters

Junction Box Please contact us.

4-20 mA Isolation Unit UG-33

Piezoelectric Accelerometers

Rack Mount Panel UG-90

For mounting of up to 5 units

Adds one user-definable high-pass filter and low-pass filter to main circuit User Filter HPF: Setting range 3.15 Hz to 500 Hz, 1/3 octave band steps (Velocity, displacement HPF: setting range 6.3 Hz to 500 Hz) LPF: Setting range 50 Hz to 10 kHz, 1/3 octave band steps NX-50

- Suitable for constant monitoring of machine vibrations in power stations, industrial plants, or production facilities, using piezoelectric accelerometers
- Separate main monitoring circuit (switchable to acceleration, velocity, displacement mode) and dedicated acceleration circuit. This allows combination of vibration measurement and monitoring tasks.
- Separate alarm and trip threshold vibration levels can be set for main circuit, to trigger suitable actions when levels are exceeded
- High-pass filter and low-pass filter settings can be made separately for main circuit and acceleration circuit

Input	Unbalanced input 1	For piezoele	For piezoelectric accelerometer with integrated preamplifier					
switching	Unbalanced input 2	For unbalar	nced conne	ection via U	G-20 or UG-21			
	Balanced input	For balance	ed connect	ion via UG-2	20 or UG-21			
Monitoring	Acceleration (m/s ²)	EQ PEAK (EQ PEAK=	=√2×RMS)				
modes	Velocity (mm/s)	RMS						
	RMS Displacement (mm)	EQ P-P (EC	Q P-P=2√2	×RMS)				
Measurement	Acceleration	5 Hz to 30 k	Hz					
frequency	Velocity	5 Hz to 2 k	Ηz					
range	Displacement	5 Hz to 100	Hz					
Filters	HPF	Off (5 Hz), 1	10 Hz, 30 H	Hz, 50 Hz, 5	00 Hz (-3 dB)			
(main circuit)	LPF	Off (30 kHz	Off (30 kHz), 50 Hz, 100 Hz, 500 Hz, 2 kHz (-3 dB)					
Filters	HPF	Off (5 Hz), 1	10 Hz, 30 H	Hz, 50 Hz, 5	00 Hz (-3 dB)			
(acceleration circuit)	LPF	Off (30 kHz), 50 Hz, 100 Hz, 500 Hz, 2 kHz (-3 dB)						
DC output vo	ltage	+10 V (at range full-scale point)						
AC output voltage		Acceleration 2 Vpeak Velocity 2 Vrms						
		Displacement 2 Vp-p (at range full-scale point)						
Alarm functio	ons	Alarm, trip, circuit fault						
Alarm output		Relay contacts close when alarm is triggered, and alarm LED lights up						
Level range	Relation	-						
(main circuit,	between	Acceleration	Main circuit Velocity	Displacement	Dedicated acceleration range (Range depends on setting range of main circuit			
dedicated	dedicated	1 000	1 000	100	1 000			
acceleration	acceleration	300	300	30	1 000			
circuit)*		100	100	10	100			
circuit)	range and	30	30	3				
	main circuit	10	10	0.3	10			
	range	1	3	0.3	1			
					•			
Power	Input voltage	85 V to 265 V AC, 47 Hz to 440 Hz						
	range							
		-10 °C to 50 °C, max. 90 %RH						
Temperature	/humidity	-10 °C to 50	J C, max.	30 /81111				
Temperature range for ope		-10 °C to 50	J C, max.	30 /81111				

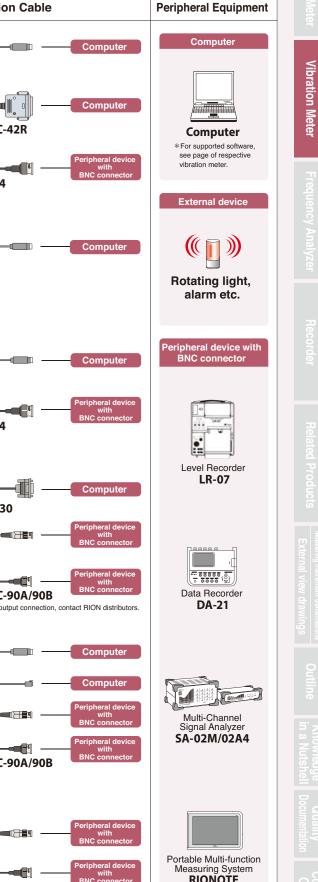
the above level range figures must be multiplied by 10.

For machine vibration measurements at high temperature Waterproof, insulated Shear-type accelerome with high temperature resistance, light weight, and high sensitivity External view and Waterproof, insulated accelerometer with integrated preamplifie features ble for use at r **PV-10B PV-10T** PV-63 (6 PV-65 (6 7.14 Charge sensitivity pC/(m/s2) *1 9.18 4.59 Voltage sensitivity mV/(m/s²) 5.1 Measurement 3 to 8 000 (±1 dB) 3 to 8 000 (±1dB) 1 to 8 000 (±1 dB) 1 to 9 000 (±1 dB) frequency range Hz **2 3 to 10 000 (±2 dB) 3 to 10 000 (±2 dB) 1 to 15 000 (±3 dB) Mounting resonance frequency kHz* 24 26 25 24 Temperature range for operation $\ ^\circ \! C$ -20 to +100 -50 to +150 -20 to +300 -50 to +260 Maximum measurable acceleration m/s2(peak) 500 2 000 4 000 4 000 Standard mounting method ** M4 screw (supplied) 1.5 N·m M4 screw (supplied) 1.5 N·m M6 screw (supplied with VP-56A) 3.5 N·m M6 screw (supplied with VP-56A) 3.5 N·m Waterproofing specifications JIS C 0920 JIS C 0920 Protection class 8 (sealed), 2 atm Protection class 8 (sealed), 2 atm Cable Integrated type, 5 m (no connector) VP-51I (supplied) VP-51B (supplied) Integrated type, 5 m Mass g 120 120 28 26 Dimensions (mm) -==## HII. M12×1

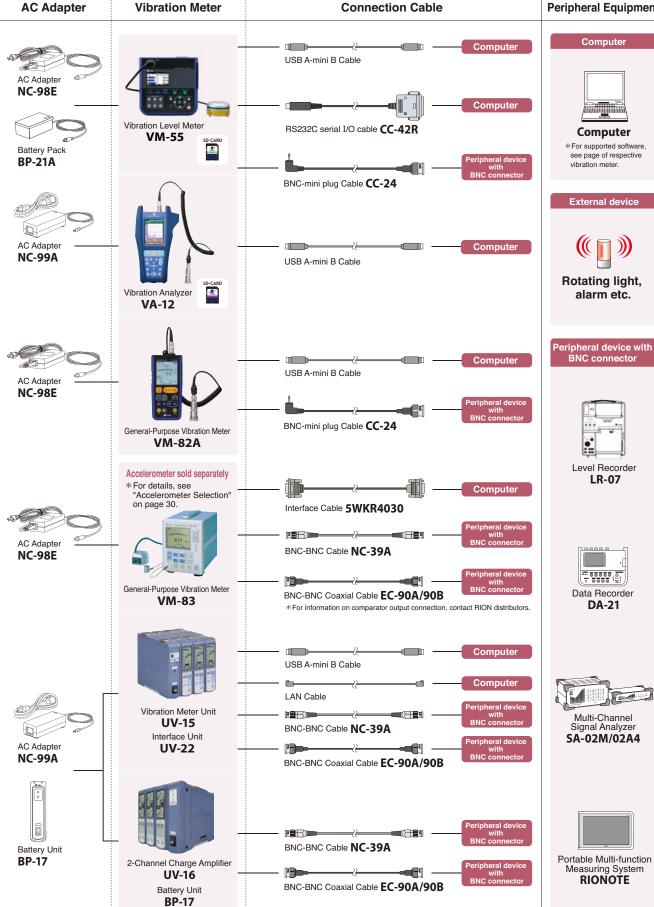
1 Representative value; actual sensitivity as noted on calibration chart supplied with accelerometer 💥 2 Representative value when using standard mounting method (3) on flat surface

Note The piezoelectric ceramic element of these accelerometers can be damaged if subject to a strong shock. Take care not to drop the accelerometer, and use magnet attachments with care.

Specific purpose				Model	See page	
Vibration	Point	On-site measurement		VM-63C, VM-82A	24	
measurement	measurement	Test chamber	measurement	VM-83 + PV series	19, 27	
	Multi-point	Vibration meter Charge amplifier		UV-15 + PV series	19, 26	
	measurement			UV-16 + PV series	19, 27	
Vibration analysis		FFT analysis		VA-12	25	
				SA-02	32	
		Octave analysis Transfer function		RIONOTE + SX-A1VA, RIONOTE + SX-A1FT	40	
				SA-02, RIONOTE + SX-A1RT	32, 40	
				RIONOTE + SX-A1FT	40	
				SA-02	32	
		Mode analysis		SA-02 + Mode analysis software + Impulse hammer	32, 36	
		Tracking analysis		SA-02 + Tracking analysis software,	32, 36, 40, 4	
				RIONOTE + Tracking analysis software		
Equipment	Vibration	Online		UG-50	28	
diagnosis	monitoring	Trend management	Small-scale	VM-82A	24	
	Vibration diagnosis	Simple diagnosis	Vibration magnitude measurement	VM-63C, VM-82A	24	
		Precision	Fault analysis	VA-12, RIONOTE + SX-A1VA	25, 40	
		diagnosis	Visualization of vibrations	SA-02 + Mode analysis software	32, 36	
Quality	Product quality	management		VM-83 + PV series	19, 27	
management				SA-02, RIONOTE + SX-A1CMP	32, 40, 41	
	Low-Frequency	/ Micro-vibration	s	LS-40C, LS-10C	20	
Damping material lo	ss factor			SA-02 + AS-14PA5	32, 33	
Vibration meter calib	oration			VE-10, PV-03	20	


Vibrations affecting human body

Specific purpose		Model	See page
Vibration measurement	Road traffic vibrations, construction sites, environmental vibrations, measurements related to vibration restriction laws	VM-55	22
	Marine vibration	VM-54 + VX-54WS + PV-83CW	23
	Whole-body vibration	VM-54 + VX-54WB1 + PV-62	23
		SA-02 + LS-10C + LF-20	20, 32
	Hand-arm vibration	VM-54 + VX-54WH + PV-97I/97C/93	19, 23
		SA-02 + PV-97I + CAT-SA02-HT	19, 32, 37
Vibration level recording		VM-55 + LR-07	22, 43

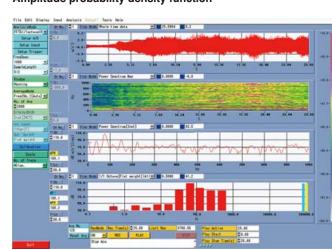

Vibration Meter

Accelerometer Selection

		tric Accelerometer	Connection Cable	Vibration Meter
tric				
Standard piezoelectric		Piezoelectric Accelerometer	Standard Cable VP-51A See p. 48 for external VP-42 VM-83 UV-15	
amplifier	-	Piezoelectric Accelerometer PV-90T	View drawings Using VP-51A (Gan be extended) (Ultra-compact Accelerometer Cable VP-51LC *TEDS compliance only with UV-15	
With integrated amplifier	4	Piezoelectric Accelerometer	Ultra-compact Accelerometer Cable VP-51LC	General-Purpose Vibration Meter VM-83
With in	Ш	Piezoelectric Accelerometer — PV-91CH	Ultra-compact Accelerometer Cable VP-52C	
General-purpose		Piezoelectric Accelerometer _ PV-85/86	Standard Cable	Vibration Meter Unit
		Piezoelectric Accelerometer	Standard Cable	Interface Unit UV-22
Compact/lightweight		Piezoelectric Accelerometer	PV-08 Cable VP-51J VM-83 UV-15	
	9	Piezoelectric Accelerometer – PV-90B	Ultra-compact Accelerometer Cable VP-51L	
High-output		Piezoelectric Accelerometer	Standard Cable VP-51A	2-Channel Charge Amplifier UV-16 Battery Unit BP-17
ø	4	Piezoelectric Accelerometer PV-90H	Ultra-compact Accelerometer Cable VP-51LB	
High-temperature	E	Piezoelectric Accelerometer	Heat-resistant Cable	Multi-channel
High-ter		Piezoelectric Accelerometer	Heat-resistant Cable	Signal Analyzer SA-02
		Piezoelectric Accelerometer _ PV-63	SA-02 Charge Converter VP-51I SA-02 DA-21 RIONOTE	
	-	Piezoelectric Accelerometer – PV-93	Tri-axial Standard Cable	4 channel Data Recorder DA-21
Triaxial type	500	Piezoelectric Accelerometer – PV-97C	Ultra-compact Accelerometer Cable	
Triay		Piezoelectric Accelerometer – PV-97	PV-97 Tri-axial Accelerometer Cable	Portable Multi-function
	ø	Piezoelectric Accelerometer – PV-97I	PV-97I Tri-axial Accelerometer Cable	Measuring System RIONOTE
Ð	5	Servo Accelerometer —	Integrated (1 m)	S
Servo type		LS-10C	EC-40B (10 m) EC-40C (30 m, with reel)	General-Purpose Vibration Meter
S		Servo Accelerometer — LS-40C	Integrated (1 m) EC-40D (50 m, with reel)	Servo Accelerometer Power Supply

Vibration Meter Connection Examples

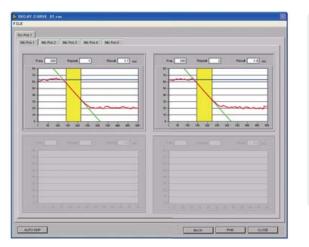
Memory card compatible model For details, see "Memory Card" on page 15.

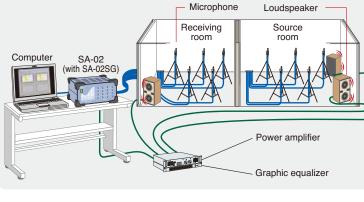

SD-CARD RION

31

Frequency Analyzer (Multi-Channel Signal Analyzer/Software)

Multi-Channel Signal Analyzer SA-02 combines FFT Analysis and 1/1, 1/3, 1/12 Octave Band Analysis Capability




Basic screen layout

	2020 (Filter) JIS C 1514: 2002 class 1), WEEE Directive, RoHS Directive,				
	Chinese RoHS Directive				
Frequency range DC to 40 kHz		kHz			
FFT analyzer section	Analysis		100 Hz / 200 Hz / 500 Hz / 1 kHz / 2 kHz / 5 kHz /		
	frequencies		10 kHz / 20 kHz / 40 kHz		
	Number of		64 / 128 / 256 / 512 / 1024 / 2048 / 4096 / 8192 /		
	analysis points		16 384 / 32 768		
	Time window		Rectangular / Hanning / Flat-top / Exponential /		
	functions	3	Force Exponential		
	Functions				
	Frequency domain		Spectrum, cross-spectrum, transfer function, coherence		
	Time domain		Autocorrelation, cross-correlation, amplitude		
			probability density, amplitude probability distribution		
Octave band analyzer	Analysis band ra		ange		
section	Number of			51.0	01.10
	channe	ls used	1 to 4	5 to 8	9 to 16
	Analysis	1/1	0.5 Hz to 16 kHz		
	mode	1/3		0.4 Hz to 20 kHz	
		1/12	0.36 Hz to 22 kHz*		0.36 Hz to 5.5 kHz*
	*Depending on number of channels used per unit				
Input/output section	AC output connectors / Trigger input connector /				
	Rotary pulse input connector				
Dimensions, Weight	SA-02A4		58 (H) x 260 (W) x 210 (D) mm (without protruding parts		
			and rubber feet), approx. 2.5 kg		
	SA-02M		151 (H) x 290 (W) x 249 (D) mm		
			(without protruding parts and rubber feet),		
			approx. 5.4 kg (4 channels installed)		
			Options		
			4-Channel Input U	Jnit	SA-02E4
			Signal Output Uni	t	SA-02SG

Dedicated Analysis Software

Airborne Noise/Floor Impact Noise Insulation Measurement Software AS-20PE5

- Designed for sound insulation measurement of buildings and building materials based on ISO specifications. Measurement and evaluation for the categories of reverberation time, floor impact sound and attenuation, airborne sound, and sound absorption in a reverberation room are possible.
 - ISO 140-7 / ISO 140-8 / ISO 717-1 / ISO 717-2

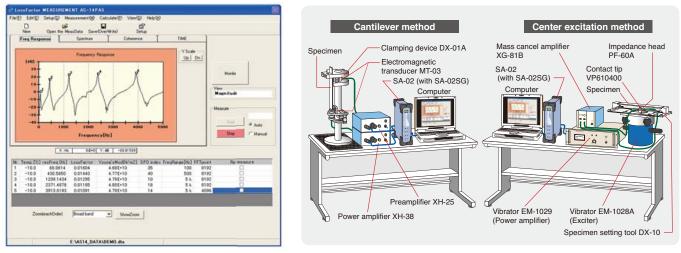
ISO 354 / ISO 140-1 / ISO 140-3 / ISO 140-4 /

For impact force measurement of standard heavy impact sources, and octave band measurements of impact force exposure levels

Impact force measurement

using an impact ball

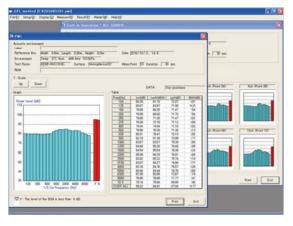
Impact Force Measuring Device PF-10

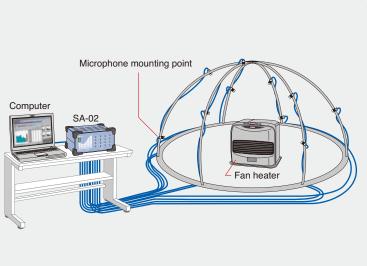


Configuration example for measuring impact force characteristics of a bang machine (Height adjustment board optional)

Applicable standards

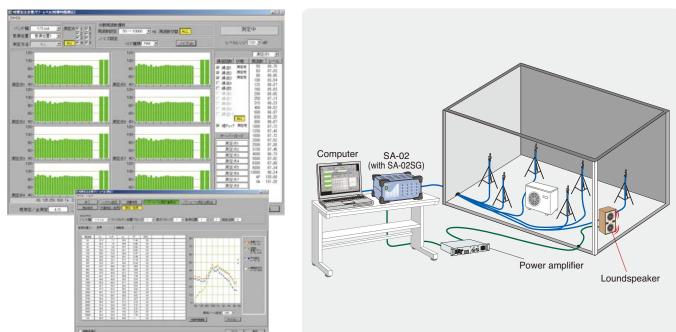
Loss Factor Measurement Software AS-14PA5


Using the center excitation method or cantilever method, the frequency response of a strip specimen is measured, and the resonance characteristics are used to determine the loss factor and Young's modulus (or shear coefficient) of the specimen according to the half-power bandwidth method.


- Automatic measurement including temperature control of a thermostatic chamber is supported.
- Applicable standards ISO 10112 / ISO 16940 / ASTM E756-05
- * When performing vibration attenuation testing for non-constraint compound damping, "Monogram display of damping material characteristics" is supported with optional software.

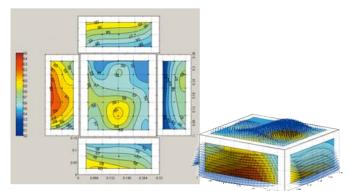
Frequency Analyzer (Software/Intensity Probe)

Dedicated Analysis Software


Sound Power Level Measurement Software for Hemi-anechoic Room AS-30PA5

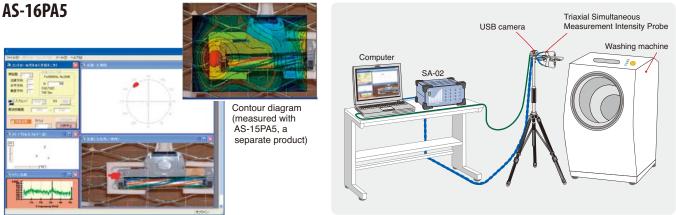
- Allows 1/3 octave band sound power level measurements, according to specifications for sound power level measurements in hemi-anechoic chambers.
- Sound pressure level values are measured in a hemi-anechoic chamber using measurement points arranged on a virtual measurement surface (hemispheric, cuboid). While applying background noise compensation for the sound pressure level at the sound source, the Z-weighted sound power level and A-weighted sound power level values are determined.
- Applicable standards ISO 3745 Acoustics Determination of sound power levels of noise sources using sound pressure Precision methods for anechoic and hemi-anechoic rooms ISO 3744 Acoustics - Determination of sound power levels and sound energy levels of noise sources using sound pressure -Engineering methods for an essentially free field over a reflecting plane

Sound Power Level Measurement Software for Reverberation Room AS-31PA5


- Supports direct and comparative measurement. Also allows reverberation time measurement.
- Supports multi-channel measurement and microphone rotator use.
- Simultaneous power level measurement for up to 32 channels possible (up to 8 channels for reverberation time measurement).
- Applicable standards ISO 3741: 1999 Acoustics Determination of sound power levels and sound energy levels of noise sources using sound pressure -Precision methods for reverberation test rooms

Sound intensity probe

Printer


Dedicated Analysis Software

Sound Intensity Measurement Software AS-15PA5

- Calculates sound intensity and performs graphics processing.
- Displays frequency spectrum, band level, and intensity spectrum information as spectrum line diagram, contour diagram, or mesh diagram, and shows sound power levels.

Sound Source Location Software

Computer

SA-02

- Determines sound incident direction using a 3-axis sound intensity probe, and displays it on screen along with a camera image.
- Overlays presumed sound source location with captured image and allows selecting the frequency (range) to analyze.

Also supports moving sound source measurement on video (option).

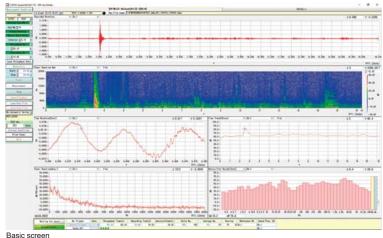
Intensity Probe (CCLD (Constant Current Linear Drive) principle)

Sound intensity measurement sensor Sound Intensity Probe SI-31I

- For sound intensity measurements, the sound pressure and the sound particle velocity must be determined. The sound particle velocity is approximated from the pressure gradient between two microphones positioned in close proximity.
 This dedicated probe determines the sound pressure gradient with high
 - accuracy, using a spacer arrangement with two condenser microphones.

Construction principle		Face to face, with integrated preamplifier
Shape	Effective acoustic distance	12 mm: 200 Hz to 5 kHz
		50 mm: 50 Hz to 1.2 kHz

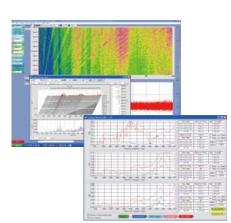
Measure sound intensity in three dimensions


Triaxial Simultaneous Measurement
Intensity Probe
SI-33I

- Allows simultaneous measurement of sound intensity in all directions of a three-dimensional orthogonal coordinate system
- Dedicated microphones capable of capturing an intensity vector as a three-dimensional spatial vector
- Three sets of 1/2 inch electret microphone pairs UC-53I with matching phase frequency response characteristics and two preamplifiers are combined with the Multi-Channel Analyzer SA-02

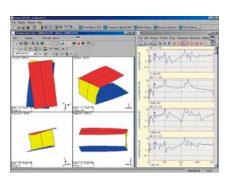
opecifications				
Construction principle		Face to face, with integrated preamplifier		
Shape	Effective acoustic distance	31 mm: 100 Hz to 2 kHz		
		50 mm: 50 Hz to 1.2 kHz		

Frequency Analyzer (Software/System)


Dedicated Analysis Software

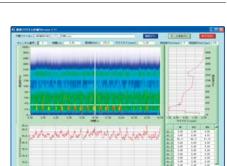
Dasic scree

Sound and Vibration Measurement System CAT-SA02-Pro


- Supports simultaneous FFT analysis, octave band analysis, and recall processing while recording time waveform data
- Allows combined viewing of downsampled FFT analysis results
- Supports simultaneous analysis for two sets of frequencies and number of sampling points
- Supports long-term time wave recording
- Comments and event notes can be attached to analysis results
- Combination with a USB camera or high-speed camera allows measurement while simultaneously recording video (option)
- Supports order ratio tracking analysis and sound quality evaluation (option)

Tracking Analysis Software CAT-SA02-Order

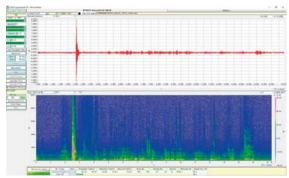
(This software is a product of Catec Inc.)


- Rotation data and sound/vibration data are recorded simultaneously to analyze the rotation order ratio.
- Available display formats include three-dimensional mapping, Campbell diagram, rpm-level display and more.

Mode Analysis Software ME' Scope VES

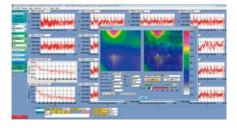
(This software is a product of Vibrant Technology Inc.)

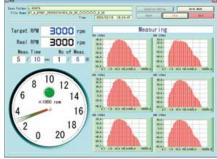
- Allows direct linking of SA-02 and mode analysis software
- Measurement points and direction for each channel can be displayed on screen using arrows, making it easy to check the next measurement point.
- Analysis using animated display can be generated in a few steps.

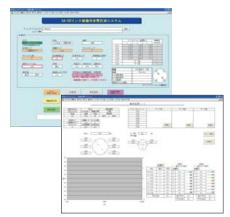


Sound Quality Evaluation Software CAT-SA02-SQ

(This software is a product of Catec Inc.)


- WAVE data collected with the SA-02 and similar data can be imported into a measurement data file and used to calculate psychoacoustic evaluation quantities.
- Calculates loudness (steady-state and transient*), sharpness, roughness, intensity fluctuation, and tonality evaluation parameters.
 *Calculation of transient loudness available as an option.





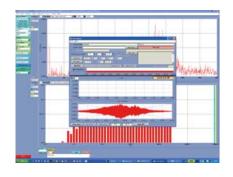
Spectrum map screen

Dedicated Analysis Software

Array Type Visualization Software CAT-SA02-AR

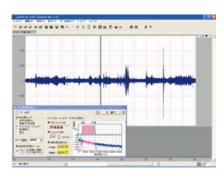
(This software is a product of Catec Inc.)

- Sound pressure level fluctuations and changes are made visible using a 32-microphone array.
- Visualization can be performed separately by frequency or overall. Microphone frequency analysis results can be displayed for each mode.
- Power spectrum and 3-D spectrum map can be observed for each array element, based on sound pressure level at the measurement position. Overlay with image data from a digital camera or similar is also possible.


Hand-arm Vibration Measurement Software CAT-SA02-HT

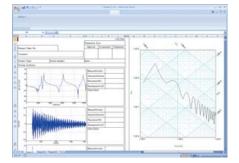
(This software is a product of Catec Inc.)

- Frequency-weighted acceleration rms values are measured for the X, Y, Z axes simultaneously. From these values (*a_{hux}*, *a_{huy}*, *a_{hux}*), the software determines the triaxial combined value *a_{hy}*.
- Applicable standards
 ISO 8041 / ISO 5349-2


Sound Power Level Measurement Software for Construction Machinery CAT-SA02-CPWL

- (This software is a product of Catec Inc.)
- Using an Excel macro, the sound power level of construction machinery can be measured.
- Applicable standards
 ISO 6395 / ISO 6393

Throughput Disk CAT-SA02-TH (This software is a product of Catec Inc.)


Long-term time waveform recording

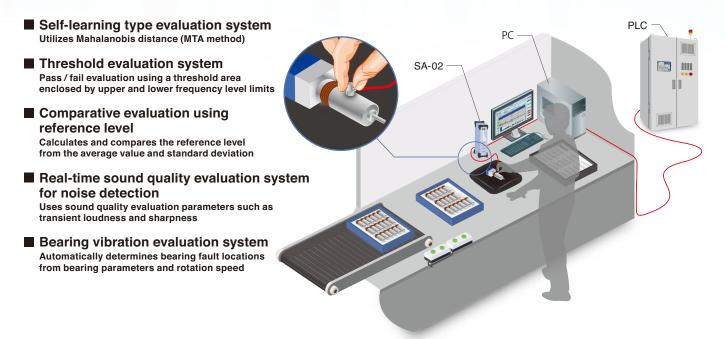
Waveform Data Manipulation Software CAT-SA32

(This software is a product of Catec Inc.)

- Versatile data manipulation
- FFT processing
- Arithmetic processing
- Overlay display
- Storing manipulated data
- Data import function

Report Creation Support Tool CAT-Report

(This software is a product of Catec Inc.)

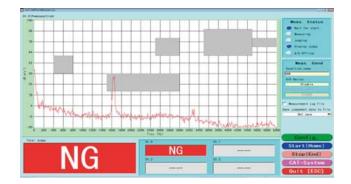

- Excel add-on
- Ease of operation
- XY graph
- Cell linking function

Frequency Analyzer (Sound and vibration evaluation system)

Dedicated Analysis Software

Unusual noise and abnormal vibrations generated on a production or inspection line can be detected from the FFT analysis results of the Multi-Channel Signal Analyzer SA-02 to implement pass / fail evaluation.

Sound and Vibration Evaluation System


Self-learning Evaluation System CAT-CMP-MTA

(This software is a product of Catec Inc.)

Using the Mahalanobis distance (MTA method) for statistical analysis, the system can be trained to recognize OK (Pass) products and mark products not in the OK group as NG (Fail). The evaluation threshold is set by the distance from each frequency range set.

- Simultaneous evaluation in multiple channels supported
- Evaluation thresholds can be set separately for each testing stage
- Evaluation thresholds can be set separately for each machine
- By defining a frequency range, evaluation thresholds can be set for each frequency range
- Automatic measurement using DIO communication or PLC communication supported

Application examples: transmission, combustion engine

Threshold Evaluation System CAT-SA02-CMP01

(This software is a product of Catec Inc.)

A square threshold area is formed by specifying the upper and lower frequency and upper and lower level where abnormality occurs. The program then determines whether the respective measured peak level falls within this area.

- Up to five evaluation threshold area can be set
- AND/OR linking of threshold area is possible
- Settings can also be made for all-pass level
- Peak level or partial overall level can be selected

Application examples: electric motor, combustion engine, compressor

Real-time Sound Quality Evaluation System for Noise Detection CAT-CMP-SQ

(This software is a product of Catec Inc.)

Applying an analytic method that closely simulates human hearing (transient loudness [DIN 45631 standard], sharpness is used to determine abnormal noise from a product. This allows identification also of sounds that could not be evaluated by sound pressure level measurements alone.

- Simultaneous evaluation in 4 channels supported
- Evaluation can be performed by transient loudness (according to DIN 45631 standard) and transient sharpness
- Evaluation thresholds can be set separately for each testing stage
- Evaluation thresholds can be set separately for each machine
- Automatic measurement using DIO communication or PLC communication supported

TEST RESULT ----

Application examples: electric motor, automotive parts

FFT & Order Tracking Evaluation System CAT-CMP-ORD

(This software is a product of Catec Inc.)

Performs FFT analysis of a measurement object in steady rotation, and allows threshold evaluation of frequency on the horizontal axis and level on the vertical axis. For a measurement object with fluctuating rotation, order tracking evaluation is performed by measuring rotation speed and calculating the order values. For each specified order, threshold evaluation of frequency on the horizontal axis and level on the vertical axis is possible. Evaluation threshold values can be set separately for each type of measurement object.

Application examples:

transmission, combustion engine, electric motor, compressor, and other rotating machinery

Dedicated Analysis Software

Reference Level Comparison Method Evaluation System CAT-CMP-REF

(This software is a product of Catec Inc.)

OK (Pass) products are measured several times, and the average value and standard deviation are calculated from the data for each frequency. The calculation results are used to set multiple frequency ranges. If level standard deviation is within range (such as 3σ etc.), the product is marked as OK, otherwise as NG (Fail). In the above sample screen, yellow is the OK range and red indicates the measured data.

- Simultaneous evaluation in multiple channels supported
- Evaluation thresholds can be set separately for each testing stage
- Evaluation thresholds can be set separately for each machine
- By defining a frequency range, evaluation thresholds can be set for each frequency range
- Automatic measurement using DIO communication or PLC communication supported

Application examples: transmission, combustion engine

netiti) - Pietr	- Selariti	Sere(F1)	Print (Fr	Resu	ilt:		_	1.000		1944
tiseist) 21.74	0A(m/s"2)Avg.1	0.478544	OA(m/s")	DMAKLE C	1574518	OA(m/s'2)	lin.t 0	.0261147		
	Time Data P-F	Period setting	07 T	-(a): [17,4)	ett Acc. (a/s	IH -0.5H-			411	1 let 0
-Dise. dels	2.76+		1	al els	Local II		4		- 1	
mi. dela	the balls had	JULIA		1111	date and	L. Bart	il turi	1 100		
to, val, detection	AL 1444 2148	यहल्पाद्दात्वा स	(Hall	1.6-60	Mile an uni	o Bude				
ive law(LPF)	1,88-									
a western detaction	11 A.M.									
ACa2: 2 8.00000	2 1.00-									-
dtal: 2 8.0000	4.55									
(Maltz 8.60	10000		and a	in the second					No.	
					the second contraction		States and a second second	A STREET	10.00	
failuret 1	-1.00-00100000000	ALC: NO.	11111	101.4 24-64	11211-24-21	all turns	101111	1.1	C 17	
Fallurat Distant	-1.84-	and the second second	The second second	the state	un al	ALL DOT D	11	10.00	20.00	- 2
Fallurat Distant	1.14	4.14	s.10	rya nala	liferia 300 (2.50 Time(a)	reget	11.10	10.00	20.00	1
Fallurat Distant	-1.54 s.3s z.3s Pour sectors	- 7050 I	4.10 1.10	aga a	Tier(s)	(1540°13. 14780 14780	HTM HTM HTM	18,38 Acc. (a/)	28.94 VIII (2 7,860
Fallent Con	-1.54 8.36 2.30 Power sectoral 8.36-	- 7050 I	a.be	erpe an Millio Andal	Tier(s)		HE MAN	0.000	28.38 28.38 (13)	
fallers: 1 Order: 1 Receivers:	-1.54 - 8.56 2.56 Poor sectrus 8.15 - 8.61 -	- 7050 I	1.10 1.10	arpa - aa	Tier(s)		10.74 14.740	0.000	20.00 VIII (
Fallers:	-1.54 E.30 2.30 Poor sectors 6.10- 6.20- 6.30- 6.30-	- 7050 I	1.10 1.10	arpa na Mitra Andri	Tier(s)		11.00 11.00	0.000	20.00 20.00	
Fallerst Doder: 20 RedetBalling (1) freeamon(4)(1)(1) 	-1.54 - 8.56 2.56 Poor sectrus 8.15 - 8.61 -	- 7050 I	1. M	rge en	Tier(s)		11.200	0.000	20.00	
falleri Doler Doler Informeredezitet Mit Erent Doler Informeredezitet Info	-1.54 5.10 2.10 Power seet root 6.00- 6.00- 6.00- 6.00- 6.00- 6.00-	- 7050 I		r ya na	Tier(s)		19.200	0.000	online vitte (
fallers: 10 Order: 10 Facebook(0)(101) - int Room: 100 Room: 100 R	-1.34 £30 2.30 Power spectrum 6.30 6.30 6.30 6.30 6.30 6.30 6.30 6.30	- 7020 I	1. M	r pe en	Tier(s)		18,700	0.000	20.04 1231 (
Fallers: Control (101) Order: Control (101) of freeserscrifts)(101) of freeserscrifts)(101) of freesers: Control (101) of freeser	*1.54 *1.54 *1.64 *1.9 *1.9 *1.9 *1.9 *1.9 *1.9 *1.9 *1.9	- 7020 I	e de	arpa an	Tier(s)		11.70 11.70	0.000	20.00	
fallers: Order: =1 Scientiscolital(Int)- mi Kalant: =1 Scientiscolital(Int)- mi Kalant: =1 Scientiscolital(Int)- mi Kalant: =1 Scientiscolital(Int)- mi Kalant: =1 Scientiscolital(Int)- mi Kalant: =1 Scientiscolital(Int)- Scientiscolit	-1,34 -1,34 8,30 2,30 Rest sectors 6,30 6,30 6,30 6,30 6,30 6,30 6,30 6,30	- 7020 I		arpa an	Tier(s)		11.700 11.700	0.000	20.00	
fallers: Order: == Code:	-1.56- -1.56- 8.48 2.58 Poer sectors 6.18 6.49 6	- 7020 I		rge a	Tier(s)		11.74 11.74	0.000	20.04	

Bearing Vibration Evaluation System CAT-CMP-BR

(This software is a product of Catec Inc.)

Allows automatic evaluation of bearing faults based on bearing parameters and rotation speed, by setting a frequency for bearing damage. When an abnormality is detected, the location can also be identified (inner ring, outer ring, rolling element, cage).

- Evaluation by input of bearing parameters and rotation speed
- Evaluation by envelope function supported
- Indication of fault location (inner ring, outer ring, rolling element, cage) supported
- Evaluation thresholds can be set separately for each machine
- Automatic measurement using DIO communication or PLC communication supported

Application examples: bearing

Frequency Analyzer Portable Multi-function Measuring System

FT SX-AT

Compact design, easy and intuitive operation Wireless connections Use it anytime anywhere!

Portable Multi-function Measuring System **RIONOTE** (E

RIONOTE consist of a Main Control Unit SA-A1 which can be configured to up to 16 channels and allowing you to perform measurements anywhere wireless. The Main Control Unit is easy and intuitive to operate, with the dedicated program of your choice. All on a large color touch screen.

Number of channels	4(2), BNC connectors, CCLD, AC/DC		
CCLD	2 mA 24 V (4 mA Factory option)		
Frequency Range	DC to 20 kHz or 0.25 Hz to 20 kHz		
Dynamic range	100 dB or better (0 dB range, fs = 51.2 kHz, 400 line FFT noise level)		
A/D converter	24 bit, delta-sigma type, simultaneous sampling		
Tacho pulse input, General p	purpose input		
Number of channels	1, BNC connector		
Tacho pulse			
Input voltage range	0 - 12 V, open collector supported, internal pull-up		
	3.3 V (pull-up resistance 1 kΩ)		
H-L threshold level	2.5 V		
Measurement rotation	5 000 pulse/s		
speed range			
General purpose			
A/D converter	10 bit successive approximation type		
Sampling frequency	Approx. 10 Hz		

Display	10.1 inch TFT color LCD	
Touch panel	Multi-touch (2 points), projected capacitive type	
Input/output section		
USB	USB A x 1, mini B x 1	
Earphone jack	Yes, Stereo mini jack,	
SD card slot	Yes (SDHC support, max. 32 GB)	
SD card	SDHC support, max. 32 GB	
Power supply	Li-Ion battery, AC adapter	
Dimensions, Weight	188 (H) x 275 (W) x 30 (D) mm	
	SA-A1: 1 200 g (incl. 280 g battery, SA-A1B4 mounted)	
Supplied accessories	Rechargeable Li-Ion battery, AC adapter, SA-A1 file converter,	
	AS-70 Viewer, Instruction manual	

Main Control Unit SA-A1 and Amplifier **SA-A1B4/B2**

Supports direct connection of microphones and piezoelectric accelerometers.

underside of main unit

Wireless Dock SA-A1WD (and Amplifier)

Separate type wireless dock and amplifier (2 channel or 4 channel configuration)

RIONOTE also enables the use of a wireless dock to avoid the cost and hassle of cables. A plurality of wireless docks and wireless sensor amplifiers can be used simultaneously, up to 16 channels, to store the measured data in the Main Control Unit as well as in the memory of wireless dock

*Selling of Wireless dock (SA-A1WD) differs from each country. Please contact us for further questions.

Program for FFT Analysis SX-A1FT

FFT analysis can be performed.

Arithmetic functions	Time domain waveform for 1 frame,
	Power spectrum, Cross spectrum,
	Transfer function, Coherence
Window functions	Rectangular, Hanning, Flat-top,
	Exponential, Force
Analysis frequencies	20 kHz, 10 kHz, 5 kHz, 2 kHz, 1 kHz,
	500 Hz, 200 Hz, 100 Hz
Number of analysis	256, 512, 1 024, 2 048, 4 096, 8 192,
points	16 384

Program for 1/3 Octave Analysis SX-A1RT

Octave band and 1/3 octave band analysis can be performed.

Standard compliance	IEC 61260-1:2014 class1,		
	ANSI/ASA S1.11-2004/Part1 class1		
Band filter center frequ	encies and number of bands		
Octave bands	0.5 to 16 000 Hz, 16 bands		
	Max. 4 channels		
1/3 octave bands	0.4 to 20 000 Hz, 48 bands		
	Max. 3 channels		
Instantaneous value	Time weighted level Lp,		
data (every 100 ms)	Time averaged level Leq,		
	Time weighted maximum level Lmax		
Processing value data	Time averaged level Leq,		
	Sound exposure level LE,		
	Time weighted maximum level Lmax,		
	Time percentile level L _N (5, 10, 50,		
	90, 95, 33.3), max. 5 values		

Program for Waveform Recording SX-A1WR (Installed in SA-A1 main unit)

It is possible to display and record the time waveform. The waveform can be analyzed on SX-A1FT. Recorded WAVE files can be analyzed with the Waveform Processing Software AS-70

Frequency range	20 kHz, 10 kHz, 5 kHz, 1 kHz, 500 Hz,
	100 Hz
Quantization	16 bit/24 bit
Voice memo marker	Yes
function	
Monitor output	Allows listening to recorded data
(playback)	(20 kHz, 10 kHz, 5 kHz only)
Recorded data	WAVE format
 Analysing is available 	also on the computer.

Frequency Analyzer

Vibration Analysis Program SX-A1VA

This program adds vibration measurement functions.

- ·All essential vibration measurement functions are provided, enabling equipment diagnosis and trend management for industrial machinery.
- The program also supports detailed diagnosis including FFT analysis and envelope processing.

Vil	pration frequency ran	ge (using PV-57I)
	Acceleration	0.02 to 141.4 m/s ² (rms)
	Velocity	0.2 to 141.4 mm/s (rms, at 159.15 Hz)
	Displacement	0.02 to 40.0 mm (EQ peak-peak, at
		15.915 Hz)
FF	T analysis mode	Power spectrum Time waveform of
		1 frame
	Frequency range	100 Hz, 200 Hz, 500 Hz, 1 kHz,
		2 kHz, 5 kHz, 10 kHz, 20 kHz
	Number of analysis	200, 400, 800, 1 600, 3200
	lines	

Judgment Program (Pass/Fail Evaluation) SX-A1CMP

This program is suitable for pass/fail evaluation of noise, vibrations and other phenomena in production or inspection lines.

• It allows the definition of evaluation windows for FFT analysis results to determine pass/fail.

Order Tracking Program CAT-SAA1-ORDTRK (This software is a product of Catec Inc.)

Noise or vibration evaluation to assess causes of resonance phenomena related to revolution speed changes

Automatic analysis based on recorded revolution data and noise/vibration waveform data

NG

Recorder (Data Recorder/Software)

Capable of recording acoustic / vibration waveforms and various voltage signals in the field Recorded data are saved in WAVE format on SD cards and can be imported into a computer for waveform analysis and other processing tasks

4 channel Data Recorder DA-21 ⊆€

- Incorporates support for CCLD (Constant Current Line Drive) 2 mA
- DC to 20 kHz frequency range
- Inter-unit synchronization (max.8 channels)
- Light weight: only 450 g (excluding batteries)
- 180 minutes recording time (2 channels, 20 kHz x 2.4)* *Using 2 GB memory card

Specifications

Number o channels

3

Specifications		
Input section	Signal input	4 channels (BNC), 1 channel (BNC rotation speed)
	CCLD (Constant	2 mA, 24 V
	Current Line Drive)	
	Frequency response	DC coupling
		DC to 1 Hz: ±1.0 dB, 1 Hz to 12.5 kHz: ±0.5 dB,
		12.5 kHz to 20 kHz: ±1.0 dB
		AC coupling
		1 Hz: ±1.0 dB, 1 Hz to 12.5 kHz: ±0.5 dB,
		12.5 kHz to 20 kHz: ±1.0 dB
Output section	Playback output	4 channels, φ2.5 monaural jacks
	connectors	
Recording section	Media	SD card [up to 32 GB (FAT16/32)]
		(Use RION supplied cards for assured operation)
Trigger section	Trigger mode	Free, single, repeat (split files in repeat mode)

Frequency range (Hz)

2 8 533 h 20 m 1 706 h 40 m 853 h 20 m 170 h 40 m 85 h 20 m 42 h 40 m

4 4 266 h 40 m 853 h 20 m 426 h 40 m 85 h 20 m 42 h 40 m 21 h 20 m

1 1 7066 h 40 m 3 413 h 20 m 1 706 h 40 m 341 h 20 m 170 h 40 m

5 688 h 32 m 1 137 h 36 m 568 h 48 m 113 h 36 m

Power supply	Power	Four IEC R6 (size AA) batteri	es, AC adapter (NC-98E, option),
section		Cigarette plug adapter CC-82	? (option)
Dimensions, Weight		Approx. 140 (H) x 175 (W) x 4	45 (D) mm,
		approx. 450 g (not including b	patteries),
		approx. 770 g (including batte	eries)
 Re-analysing is available 	able on t	he computer.	
	Options	3	
	Memo	ory card (2 GB SD card*)	MC-20SD2
	Memo	ory card (32 GB SD card*)	MC-32SP3
	Inter-u	init sync cable	CC-43
	Batter	y Pack	BP-21A
	AC ad	lapter	NC-98E
	BNC-I	BNC Coaxial Cable	EC-90 series (2 m and up)
	BNC-I	BNC Cable	NC-39A

*Use RION supplied cards for assured operation

Maximum recording times with 2 GB SD card (approximate) Sampling fragmance fragmance v 2.56 (0.4 also supported)

		Frequency range (Hz)					
		100	500	1 000	5 000	10 000	20 000
÷	1	1066 h 40 m	213 h 20 m	106 h 40 m	21 h 20 m	10 h 40 m	5 h 20 m
oer c	2	533 h 20 m	106 h 40 m	53 h 20 m	10 h 40 m	5 h 20 m	2 h 40 m
Number of channels	3	355 h 32 m	71 h 06 m	35 h 33 m	7 h 06 m	3 h 33 m	1 h 46 m
20	4	266 h 40 m	53 h 20 m	26 h 40 m	5 h 20 m	2 h 40 m	1 h 20 m

*Actual times may differ slightly depending on number of files *Maximum recording time for one file is approx. 1000 hours *Use RION supplied cards

Multi-Channel Signal Analyzer SA-02M/02A4

20 000

85 h 20 m

56 h 48 m 28 h 24 m

DA-21 recorded data file can be analyzed by this unit with the software Throughput Disk also.

Provides various display and analysis functions for WAVE file

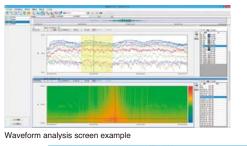
Viewer Software AS-70 Viewer (supplied with DA-21)

Maximum recording times with 32 GB SD card (approximate)

Sampling frequency: frequency range x 2.56 (2.4 also supported)

Supported models : RIONOTE, NX-43WR, NX-42WR, NX-28WR, SA-78WR, DA-21/20/40, VA-12, VX-55WR, SX-A1VA

WAVE files can be displayed as Time waveform and Time-weighted level waveform, replayed and exported (WAVE or CSV format).


Specifications	6	
Waveform	Display functions	Amplitude waveform, level waveform
	Weighting functions	10 ms, F (Fast), 630 ms, S (Slow), 10 s
*Supported op	erating system: Microso	oft Windows, 10 Pro 64 bit, 11 Pro 64 bit


201		in the second se		
*				
-	A Property and the state			10.0
Minut 1				1
				B
1.000				State Street
988	to be an a second second			100.00
1.00-			-	
				1
4. 200.00	AND IN THE PARTY OF			Taux W
	Later Later Later			1.4
1				21
1.00				121-
7 100 10				
AND LT	THE REAL PROPERTY OF			210.10
				1000
1.000	and the second sec			一日

Recorde

Recorder (Level Recorder/Printer)

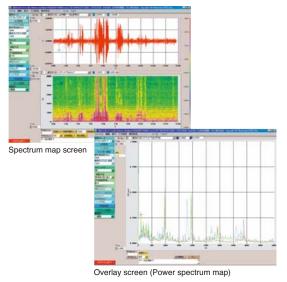
Waveform Analysis Software AS-70

RIONOTE, NX-43WR, NX-42WR, NX-28WR, SA-78WR DA-21/20/40,

- Allows importing waveform data from Rion sound level meters, vibration meters, data recorders and similar to a computer as WAVE files, to perform 1/1 and 1/3 octave band analysis and FFT analysis.
- File export and playback are also supported.

Specifications

Waveform	Processing	Maximum value, minimum value, average value, effective value,			
analysis		distribution, differentiation and integration, HPF, LPF			
Frequency we	eighting characteristics	Z, A, C, G, C to A, vertical vibration characteristics,			
		horizontal vibration characteristics			
FFT analysis	Number of analysis points	32 to 65 536			
	Data view	Power spectrum, power spectrum density, spectrogram			
Time weightin	g characteristics	10 ms, F (Fast), 630 ms, S (Slow), 10 s			
Octave band	Applicable standards	IEC 61260-1: 2014,			
analysis		JIS C 1513-1: 2020 class1 (Filter)			
	Frequency range	1/1 octave band 0.5 Hz to 16 kHz (16 bands)			
		1/3 octave band 0.4 Hz to 20 kHz (48 bands)			


Recommended operation environment

ſ	CPU	Intel Core i5 2 GHz or faster
	RAM	2 GB or more, 4 GB recommended
	HDD	20 GB or more (free space), 100 GB or more recommended
	DISPLAY	XGA (1024 x 768 pixels) resolution or higher
	OS	Microsoft Windows, 10 Pro 64 bit, 11 Pro 64 bit

Waveform analysis screen example

Waveform Analysis Software CAT-WAVE

(This software is a product of Catec Inc.)

Applicable to : NX-42WR, NX-28WR, SA-78WR, DA-21/20/40, VA-12

Signals recorded in WAVE file can be analyzed, and the result of analysis can be stored. FFT analysis or Octave analysis can be selected.

Specifications

opeemeation	Specifications						
Waveform	Display	Scaled time axis,	Scaled time axis, Differential and integral calculus available				
FFT analysis	Sampling points	64 to 32 768 point	s				
	Display	Power spectrum,	Cross spectrum, Transfer function,				
	function	Coherence, Powe	r spectrum map,Octave map,				
		Differential and ca	Iculus for spectrum area				
Octave	Applicable standard	IEC 61260-1: 201-	IEC 61260-1: 2014,				
band		JIS C 1513-1: 202	0 class1 (Filter), JIS C 1514: 2002 class1				
analysis	Frequency	Octave band	0.5 Hz to 8 kHz (15 bands),				
	range	1/3 octave band	0.4 Hz to 10 kHz (45 bands),				
		1/12 octave band	0.36 Hz to 11 kHz (180 bands)				

Operating er	Operating environment requirements						
CPU	CPU Intel Core i5/i7 1.4 GHz or more (Core2 Duo 2 GHz or more)						
RAM	2 GB or more						
HDD	60 GB (free space) or more						
DISPLAY	SXGA (1280 × 1024) or more						
OS	Microsoft Windows, 8.1 Pro 64 bit, 10 Pro 64 bit						

Level recorder featuring simple operation Besides sound and vibration level recording, this automatic balancing level recorder is

Level Recorder

LR-07 Type certification number: JR-9

- suitable for performance characteristics testing of acoustic devices and transducers, DC voltage linear recording, and more
- Paper speed control function increases feed rate while level exceeds a preset threshold, for easier reading of recorded results

Specifications	JIS C 1512 : 1996	
Applicable standard	JIS C 1512 : 1996	
Level range	10 dB, 25 dB, 50 dB, Linear	
Measurement frequency range	1 Hz to 100 000 Hz	
Paper feed rate	0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30 m	m/s
Power	Six IEC R20 (size D) batteries, AC ac	lapter (NC-99A, option), external DC input (12 V)
Dimensions, Weight	Approx. 122 (H) × 250 (W) × 325 (D) mm, approx. 3.6 kg (including batteries)
	Options	
	Recording Paper	RP-01D (6 rolls)
	Level Recorder Pen (Red)	LB-25B (set of 6)

Related Products (Acoustic Measurement Related Products)

Check the performance characteristics of floor surface materials Tapping Machine Light Floor Impact Sound Generator

FI-01A (6

- Light and hard impact source imitating walking with shoes, designed for on-site use in measuring impact sound levels of flooring
- Allows checking insulation performance of floor surface materials mainly in medium and high frequency range

ISO 10140-5, ISO 16283-2, JIS A 1418-1 Standard Light Impact Sound Source

Specifications						
Applicable standards	ISO 10140-5, ISO 16283-2, JIS A 1418-1					
Hammers Number and Spacing	5 hammers are arrayed at 100 mm intervals in a straight line					
Interface	RS-232C					
Power requirements	AC power supply 100 V to 240 V					
	Built-in rechargeable lithium ion battery (Under continuous					
	operation Approx. 45 minutes)					
Dimensions, Weight	230 (H) × 265 (W) × 557 (D) mm, approx. 10 kg					

- Heavy and soft impact source suitable for floor impact sound level measurement, simulating events such as children jumping up and down
- Can be used to evaluate mainly the medium and low frequency range insulation aspect in the acoustic performance of floor structures

JIS A 1418-2: 2019 Standard Heavy Impact Source (impact force characteristics 1)

Octave band impact force exposure level and tolerance values for impact force characteristics 1

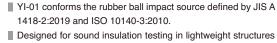
Octave band center frequency Hz		Octave band impact force exposure level dB	Tolerance dB
	31.5	47.0	±1.0
	63	40.0	±1.5
	125	22.0	±1.5
	250	11.5	±2.0
	500	5.5	±2.0

Î

00 1 000

1 500

For sound insulation testing of floors in buildings

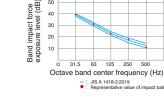

Impact Ball YI-01

FI-02

For testing the acoustic

properties of floor construction

Heavy Floor Impact Source



- where a standard heavy impact sound source (bang machine) with characteristics (1) would create too much impact force
- By performing a free drop from a height of 1 meter, a stable impact force can be created.

Major rubber compound Silicone rubber

5	500		1				
Impact			/			$ \rangle$	
-	0						
		()	1	0	2	0
				Time	(ms)		
Impa frequ	act fo Jenc 60 r	orce sy ch	expo aract	sure eristi	level cs		
ъ	50						
pact force e level (dB)	40						
eve	30						

Impact force waveform (example)

Sound source for all kinds of acoustic measurements

Random Noise Generator SF-06

- Generates white noise and pink noise and uses a 1/1 octave filter to produce band noise
 White noise and pink noise covers the 20 Hz to 20 kHz frequency range, and octave band
- noise uses center frequencies from 31.5 Hz to 8 kHz
- Applications include architectural acoustic measurements, sound absorption factor measurements in anechoic chambers, and sound insulation measurements

Hollow sphere with 32 mm thick wall and

178 mm external diameter

2.5 kg ±0.1 kg

0.8 ±0.1

Specifications

Specifications

Equivalent mass

Rebound coefficient

Shape

opecifications	
Output frequency range	White noise, Pink noise (bandwidth 20 Hz to 20 kHz), Octave band noise
Output signal level	Approx. 5.6 Vrms
Output level range	0 dB to -60 dB
Octave bands	31.5 Hz to 8 kHz
Power	100 to 250 V AC (50/60 Hz), approx. 20 VA
Dimensions, Weight	168 (H) ×198 (W) ×270 (D) mm, approx. 3 kg

*Contact RION distributors for recommendations on suitable powered speakers.

Carefully controlled acoustic properties provide a stable and quiet environment for measurements Anechoic Box (Compact Type)

- Suitable for use in testing and developing small size precision instruments
 Wall reflections are damped for enhanced measurement accuracy
- Wedge-shaped absorber layer provides high sound absorption efficiency
- Compact dimensions and casters provide mobility
- Available as standard Type L, or Type H with higher sound insulation and absorption characteristics

Sound insulation performance (Type L)

 Measured according to JIS A 1417. Results may differ slightly, depending on construction of installation location (floor, walls, ceiling) and ambient noise level. 								evel.
	Frequency	(63 Hz)	125 Hz	250 Hz	500 Hz	1kHz	2 kHz	4 kHz
	Sound insulation	10 dB	15 dB	23 dB	30 dB	35 dB	40 dB	40 dB
	#Deviation 2 dB or more						oronoo voluoo	

Dimensions, Weight (Type L)

Dimensions, weight (Type L)								
Model	External dimensions	Internal dimensions	Weight					
11L	947 (H) × 904 (W) × 722 (D) mm	500 (H) × 600 (W) × 400 (D) mm	125 kg					
22L	1187 (H) × 1104 (W) × 922 (D) mm	700 (H) × 800 (W) × 600 (D) mm	150 kg					
33L	1387 (H) × 1304 (W) × 1122 (D) mm	900 (H) \times 1 000 (W) \times 800 (D) mm	200 kg					

Anechoic Room

- Can be assembled on site in existing buildings, which helps to keep costs lowWall reflections are damped for enhanced measurement accuracy
- Enhanced sound insulation performance and additional facilities available as options
- Available as standard Type L, or Type H with higher sound insulation and absorption characteristics

Sound insulation performance (Type L/Type H)

 Measured according to JIS A 1417. Results may differ slightly, depending on construction of installation location (floor walks ceiling)

depending on construction of installation location (floor, walls, ceiling) and ambient noise level.							evel.
Frequency	(63 Hz)	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz
Sound insulation	32 dB	39 dB	43 dB	44 dB	56 dB	62 dB	64 dB
*Deviation -3 dB or more *Figures in brackets are reference values							

Dimensions, Weight (Type L)

Model	External dimensions	Internal dimensions	Weight
11L	2 900 (H) \times 2 400 (W) \times 2 000 (D) mm	2 100 (H) × 1 800 (W) × 1 400 (D) mm	3 400 kg
22L	2 900 (H) × 3 400 (W) × 2 800 (D) mm	2 100 (H) × 2 800 (W) × 2 200 (D) mm	5 200 kg
33L	2 900 (H) × 4 200 (W) × 3 800 (D) mm	2 100 (H) × 3 600 (W) × 3 200 (D) mm	7 200 kg

Sound Proof Chamber

- Can be assembled on site in a short time
- Suitable for many applications, including acoustic measurements of small machinery and equipment, sound-shielded environment configuration, acoustic testing and more
- Enhanced sound insulation performance and additional facilities available as options

Sound insulation performance

 Measured according to JIS A 1417. Results may differ slightly, depending on construction of installation location (floor, walls, ceiling) and ambient noise level. 						evel.	
Frequency	(63 Hz)	125 Hz	250 Hz	500 Hz	1 kHz	2 kHz	4 kHz
Sound insulation	25 dB	32 dB	38 dB	50 dB	53 dB	55 dB	58 dB
*Deviation –3 dB or more *Eigures in brackets are reference values							

Dimensions, Weight

Model	External dimensions	Internal dimensions	Weight	
71	2 415 (H) × 2 080 (W) × 2 080 (D) mm	1 925 (H) × 1 830 (W) × 1 830 (D) mm	1 340 kg	
81	2 415 (H) × 3 075 (W) × 2 080 (D) mm	1 925 (H) × 2 825 (W) × 1 830 (D) mm	1 750 kg	
External dimensions include air duct.				

Related Products (Acoustic Measurement Related Products)

Vertical Incidence sound absorption coefficient measuring device using two-microphone method Vertical Incidence Acoustic Measurement System Impedance Tube

- Within an Impedance tube, the reflected sound or transmitted sound from sound hitting the sound absorbing material or sound insulation material surface vertically is captured to measure the sound absorption coefficient, acoustic impedance, and related values, as well as the sound reduction index of a material.
- The results can serve for evaluation and for determining the physical properties of sound absorbing material, sound insulation material and similar materials used for example to achieve weight reduction in automobiles or high-rise buildings.

Model Applicable standards		Model 9301	Model 9302	Model 9303	Model 9305
				JIS A 1405-2, ISO 10534-2, ISO 13472-2	JIS A 1405-2, ISO 10534-2
Measurement	Low-frequency tube	100 Hz to 1 600 Hz	125 Hz to 1 600 Hz	125 Hz to 1 600 Hz	—
range	High-frequency tube	500 Hz to 6 300 Hz	500 Hz to 6 300 Hz	—	1 000 Hz to 10 000 Hz
Configuration	Low-frequency tube	Main section, Link section,	Main section, Calibration section,	Main section, Calibration section,	—
		Calibration section,	Measurement section,	Measurement section,	
		Measurement section,	Diameter 100 mm	Road mounting metal bracket,	
		Sound absorption coefficient		Reference metal bracket	
		measurement section,		Diameter 100 mm	
		Diameter 100 mm			
	High-frequency tube	Main section, Link section,	Main section, Link section,	—	Main section, Link section,
		Calibration section,	Measurement section,		Calibration section,
		Measurement section,	Diameter 29 mm		Measurement section,
		Sound absorption coefficient			Sound absorption coefficient
		measurement section,			measurement section,
		Diameter 29 mm			Diameter 16 mm
	1/4-inch microphones	4	2	2	4
	Amplifier	1 set	1 set	1 set	1 set
	Computer (Option)	1	1	1	1

Model 9301 Vertical Incidence Sound Absorption Coefficient/Sound Reduction Index Measurement System

Measures the sound absorption coefficient and acoustic impedance related items of sound absorbing material and the vertical incidence sound reduction index of sound insulation material.

Model 9302 Vertical Incidence Sound Absorption Coefficient Measurement System

Measures the sound absorption coefficient and acoustic impedance related items of sound absorbing material.

Model 9303 Road Surface Sound Absorption Coefficient Measurement System

Designed for on-site measurements of the sound absorption coefficient of road surfaces, used in running vehicle noise tests. Enables similar measurements as the Model 9302.

Low-frequency tube (internal diameter 100 mm)

Model 9305 Vertical Incidence Sound Absorption Coefficient/Sound Reduction Index Measurement System for High Frequency Measurement

Measures frequencies up to 10 000 Hz; ideal for measuring acoustic characteristics of sound absorbing and insulating materials for use in electric vehicles and other applications.

Related Products (Other)

Allows easy measurement of fluid viscosity

Viscometer

VI-00 CC

- Designed for quality control applications in the manufacturing process of industrial products such as petrochemicals, paint, and adhesives, as well as foodstuffs.
- Measurement is performed by simply submerging a rotor in the fluid. The resistance to rotor movement caused by the viscosity (torque) is measured to obtain direct readings.

Measurement range	No. 3 rotor: 0.3 to 13 dPa.s (with No. 3 cup)			
	No. 1 rotor: 3 to 150 dPa.s (with JIS 300 mL be	eaker*1)		
	No. 2 rotor: 100 to 4000 dPa.s (with JIS 300 m	L beaker*1)		
Sample fluid capacity	No. 1 and No. 2 rotor (with JIS 300 mL beaker	*1) approx. 300 mL		
	No. 3 rotor (with No. 3 cup)	approx. 170 mL		
	Clearance between rotor	r end and cup bottom		
	about 15 mm			
Measurement accuracy	±10 % ±1 digit of indicated value, reproducibilit	ty ±5 %		
Rotor speed	62.5 rpm			
Power supply	IEC LR6 (size AA) alkaline batteries,			
	nickel-hydride rechargeable batteries, AC adap	oter VA-05JA		
Dimensions, Weight	175 (H) × 77 (W) × 40 (D) mm (without protrud	ing parts),		
	Approx. 260 g (without batteries)			
Supplied accessories	No. 1 rotor (dia. 24 × 53 × 166 mm) SUS304	1		
	No. 2 rotor (dia. 15 × 1 × 113 mm) SUS304	1		
	No. 3 rotor (dia. 45 × 47 × 160 mm) SUS304	1		
	No. 3 Cup (dia. 52.6 × 75 mm) SUS304	1		
	Extension rod (900 mm · 300 × 3) SUS304	1		
	IEC LR6 (size AA) alkaline batteries	4		

*1 JIS R 3503 : 1994, φ78×103 (H)

Options	
Stand	VA-04
AC adapter	VA-05JA

Perform precise measurements of volume of engine combustion chambers in seconds with no fluid needed

RION Acoustical Volumeter

(For combustion chamber volume measurement) (ϵ

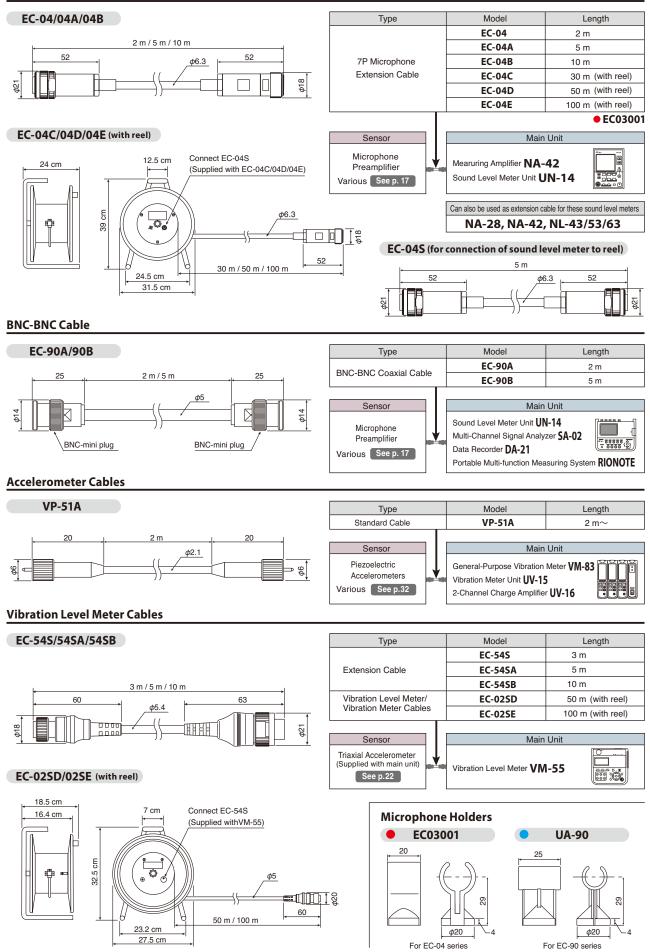
- The volume of a combustion chamber, regardless of its size and shape, can be measured by simply placing the sensor of the RION Acoustical Volumeter on the combustion chamber cavity of the cylinder head.
- For assembled engines, a special adapter can be used to connect the sensor of the volumemeter to the spark plug hole.
- The Acoustical Volumeter can measure the precise volume of a combustion chamber in about two seconds. This instrument is perfect for the process of engine manufacturing or maintenance.

RION Acoustical Volumeter

(For volume of solid object)

Even the volume of objects with complex shape, such as a golf ball, can be measured accurately in about two seconds.

[Theory]


Unlike the conventional method using Archimedes Principle (where the target object is immersed in a fluid (water or oil) and the displaced liquid's volume is measured), the volume meter system, using acoustics, allows volume and density measurement of the target object in a dry state.

47

External view drawings of measurement microphone and accelerometer cables

Sound Level Meter Cables

Measuring Instrument Combinations

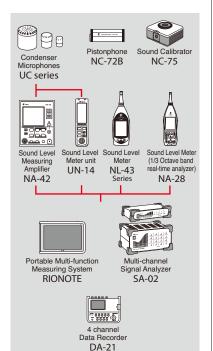
Before starting an acoustic or vibration measurement, three factors must be considered:

- What kind of sound/vibration is to be measured?
- For what purpose?
- Which kind of processing is required (recording, analysis etc.)?

Depending on these factors, the measurement method, type of measuring instrument, and choice of peripheral equipment will differ. Selecting the right combination of products is essential for achieving accurate and reliable results.

The following pages are intended to help with the selection of equipment, by describing some representative configurations and showing connection examples.

INDEX


1	Acoustic Measurement	49
2	Calibration of Sound Level Meters and Vibration Meters	49
3	Sound Level Meters and Vibration Level Meters in the Field	50
4	Measurement of ground vibrations	50
5	Sound Level Monitoring	50
6	Noise Measurement at Working Places	51
7	Low-Frequency Sound Measurement	51
8	Quality Management Based on Sound and Vibrations	51
9	Sound-Proof Chambers, Anechoic Chambers, Echo Chambers	52
10	Measurement of Sound Insulation and other Performance Parameters of Buildings	52
11	Acoustic Intensity · Sound source location	52
12	Acoustic Power Level	53
13	Sound quality evalution	53
14	Pure tone evaluation	53
15	Measurement of Mechanical Vibrations	54
16	Vibration Monitoring	54
17	Industrial Machinery Equipment Diagnosis	54
18	Whole-Body Vibration Measurement	55
19	Hand-arm Vibration Measurement	55
20	Mode Analysis	55
21	Tracking Analysis System	56
22	Measurement of Low-Frequency Microvibrations	56
23	Vibration measurement with sound level meter	56

Acoustic Measurement

In acoustic measurements requiring high accuracy, the basic instrument combination consists of a condenser microphone and preamplifier. To this, other equipment, such as a frequency analyzer and data recorder, is added as needed.

The type of condenser microphone will be determined by factors such as the target sound pressure level, frequency range, and sound field conditions. (See selection examples on page 17.) The general-application Sound Level Measuring Amplifier NA-42 is suitable as an amplifier for these microphones. Frequency analyzers come in two types: constant-ratio type real-time analyzers and constant-amplitude type FFT analyzers. In the former category, RION offers the Precision Sound Level Meter NA-28 with the 1/3 octave band real-time analyzer function. In the FFT category, there is the Portable Multi-function Measuring System RIONOTE. The Multi-Channel Signal Analyzer SA-02 and Portable Multi-function Measuring System RIONOTE provides both 1/1, 1/3, 1/12* octave band real-time analysis * and FFT analysis * capability.

% SA-02 only * RIONOTE is optional

Calibration of sound level meters and similar devices Pistonphone Sound Calibrator NC-72B NC-75 Calibration of vibration meters and similar devices

Calibration of Sound Level Meters and Vibration Meters

Calibration of sound level meters

Calibrator NC-75 (1 kHz, sound pressure

level 94 dB), as well as the Pistonphone

Calibration of vibration meters

In order to make it possible for users to

easily calibrate vibration meters and

vibration accelerometers, RION offers

the Calibration Exciter VE-10 (159.2 Hz,

acceleration 10 m/s², velocity 10 mm/s,

and similar devices

For overall checking of sound level meters and acoustic measurement

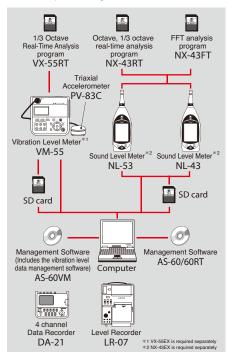
systems, RION offers the Sound

NC-72B (250 Hz, 114 dB).

and similar devices

displacement 10 µm).

Measuring Instrument Combinations

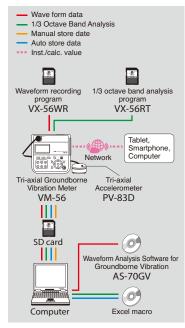

The basic model lineup for JIS and IEC standard compliant sound level meters is the NL series. For on-site measurements of vibration levels, the Japan Measurement Law and JIS compliant Vibration Level Meters VM-55 are suitable. The NL-43 series (SD cards) and the VM-55 series (SD cards) use memory cards to allow long-term recording of vibration level data and calculated data.

Data stored on memory cards can be utilized by the dedicated software applications AS-60 and AS-60VM for data graph display, editing, further processing, and creating daily and weekly reports.

The NL-43 series supports use of the Octave Band and 1/3 Octave Band Real Time Analysis Program NX-43RT and the FFT Analysis Program NX-43FT.

The Data Management Software AS-60 allows playback of real sound files. Analysis data saved with the NX-43RT can be displayed, edited, and processed using the Data Management Software (With Octave and 1/3 Octave Data Management Software) AS-60RT. The VM-55 allows use of the 1/3 Octave Real-Time Analysis program VX-55RT for frequency analysis.

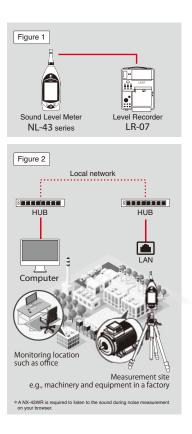
For recording of sound level and vibration level data, RION level recorder LR-07 is useful. Sound pressure waveform and vibration acceleration waveform information can be recorded using a 4 channel data recorder DA-21, allowing for later analysis with waveform processing software.


Heasurement of groundborne vibrations

The Tri-axial Groundborne Vibration Meter VM-56 can be used for measuring groundborne vibrations, for example in accordance with the stipulations for "Building damage" and "Human annoyance in buildings" of DIN 4150-2/-3 and ISO 8041, or for mining vibration measurements etc. By using the Waveform Recording Program VX-56WR or the Waveform Analysis Software for Groundborne Vibration AS-70GV, detailed frequency analysis is also possible.

Because the sensor and the unit are waterproof (sensor IPX7, main unit IP54), long-term measurements present no problem. Similar to the data of short-term measurements, data are saved on the SD card in CSV format, which enables editing on a computer without the need for proprietary software. To facilitate report creation, an Excel macro is supplied free of charge.

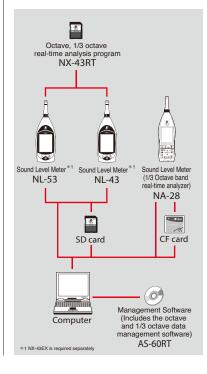
Utilizing online connection via a communications circuit, long-term monitoring from a remote site is possible.


The communication function also makes it easy to configure a live-to-web system, and the high quality for which RION products are famous contributes significantly to data security in a long-term setup. High reliability minimizes the risk of missing data.

5 Sound Level Monitoring

Plant Noise Monitoring System Noise level monitoring is widely used as part of noise control measures to improve the living environment in the vicinity of factories. For short-term measurement, a system that combines the Sound Level Meter NL-43 series with the Level Recorder LR-07 and an all-weather windscreen can be used (Figure 1).

We recommend the NL-43 series of sound level meters (controlled from a web browser) for factory noise monitoring. Simply connect the sound level meter to a network to remotely monitor the measurement status of the sound level meter from a web browser. Web browser functions include viewing of the measurement data, remote operation of the sound level meter (measurement settings, start and stop of measurement, time synchronization, etc.), real-time audio playback, file download, and a marker function. This range of functions makes it possible to perform noise monitoring of equipment and machinery at factories. (Figure 2)

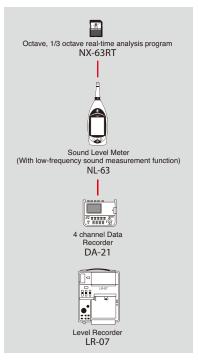

Noise Measurement at Working Places

The measurement of sound exposure levels is an important prerequisite for protecting personnel working in an environment with high sound level from hearing damage. Regulations to control generation of noise at work places have come into force in many countries. For instance, The Noise Prevention Guideline issued by the Japanese Labor Ministry (currently the Health, Labor and Welfare Ministry) in 1992 provides the framework for measurement and evaluation of equivalent continuous sound pressure levels.

The Sound Level Meter NL-43 series is suitable for such measurements. When the NI -43 series is used, the results can be stored on a SD card and later exported to a spreadsheet application for easy processing.

The Octave Band and 1/3 Octave Band Real Time Analysis Program NX-43RT can also be used to analyze the frequency ranges that are critical for noise countermeasures.

The Sound Level Meter NA-28 with the 1/3 octave band real-time analyzer function is also a highly useful tool. Analysis data saved with the NX-43RT and NA-28 can be displayed, edited, and processed using the Data Management Software (With Octave and 1/3 Octave Data Management Software) AS-60RT.

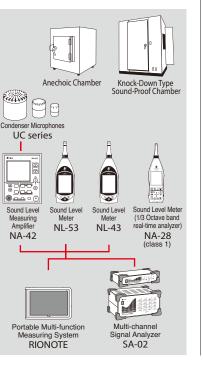


Low-Frequency Sound Measurement

So-called infrasound in the range below the human hearing threshold, from 1 Hz to about 20 Hz, can have a physiological impact on humans if sound pressure levels are very high. It can also cause other unwanted effects such as window rattling and develop into an environmental problem.

To measure sound in this range, the Sound Level Meter NL-63 + NX-63RT which provides G characteristics as defined by ISO 7196 and 1/3 octave band analysis can be used.

By connecting the Level Recorder LR-07 or a 4 channel Data Recorder DA-21 the level changes and sound pressure signal condition can be recorded.


Quality Management Based on Sound and Vibrations

Measuring the noise level and vibrations produced by machinery and other equipment can often provide valuable data for quality control. Depending on the characteristics of the measurement target. UC series microphones or PV series accelerometers are used as sensors connected to equipment such as the Sound Level Meter Unit UN-14, Vibration Meter VM-83 or Charge Amplifier UV-15/16.

When only the sound or vibration Level is to be measured, the NL-43 series, NA-42, or VM-83 with comparator function are suitable.

If detection of unusual sound or other frequency analysis processing is required, the Multi-Channel Signal Analyzer SA-02, Portable Multi-function Measuring System RIONOTE, or High-Precision Sound Level Meter NA-28 (with 1/3 octave band analysis capability) are useful.

For pass/fail evaluation of products in a manufacturing process, the Multi-Channel Signal Analyzer SA-02 series and evaluation software of the CAT-SA02-CMP01 series, or the Portable Multi-function Measuring System RIONOTE and dedicated evaluation software (under development) are suitable.

Measuring Instrument Combinations

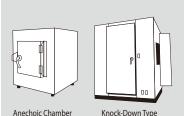
When performing acoustic measurements, special conditions must often be established, such as low-noise environment, semi-free sound field, free sound field, or diffuse sound field.

Low-noise environment

Using a sound-proof chamber or box, when the sound level emitted by equipment is low, ambient noise can influence a measurement. To prevent this, place the measurement target in a sound-proof chamber or box. In some cases, using an anechoic chamber or box where the influence of reflections is minimized can also be useful. For acoustic power level measurements according to the sound pressure method or for measuring the sound insulation characteristics of building materials, a semi-free sound field, free sound field, or diffuse sound field must be realized, according to standard stipulations. This can be achieved by using suitable RION products.

Hemi-free sound field

Using a semi-anechoic chamber Except for the floor, all surfaces of such chambers are specially treated for sound absorption to minimize the influence of reflections.


Free sound field

Using an anechoic chamber All surfaces including the floor of such chambers are specially treated for sound absorption to minimize the influence of reflections.

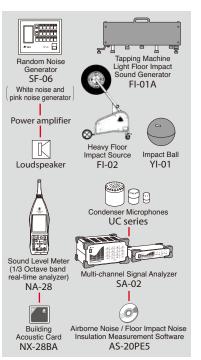
Diffuse sound field

Using an echo chamber or type I test chamber For sound insulation measurements, JIS prescribes the use of a so-called Type I chamber which provides an environment with uniform energy distribution.

Insulation measurement environment Using a type II test chamber This refers to a cuboid test chamber with specially adjusted reverberation times for specific frequencies.

Knock-Down Type Sound-Proof Chamber

10

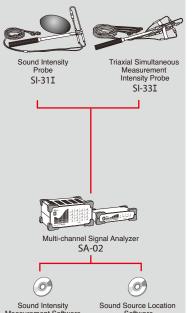

Measurement of Sound Insulation and other Performance Parameters of Buildings

The acoustic properties of dividing walls, floor slabs, and other building elements are usually measured and evaluated according to the JIS specifications or methods recommended by the Architectural Institute of Japan, as listed below.

- ISO 140-1
 - Acoustics Measurement of sound insulation in buildings and of building elements - Part 1: Requirements for laboratory test facilities with suppressed flanking transmission
- ISO 140-3 Part 3: Laboratory measurements of airborne
- sound insulation of building elements ISO 140-4
- Part 4: Field measurements of airborne sound insulation between rooms
- ISO 140-7 Part 7: Field measurements of impact sound insulation of floors
- ISO 140-8
- Part 8: Laboratory measurements of the reduction of transmitted impact noise by floor coverings on a heavyweight standard floor ISO 717-1
- Acoustics Rating of sound insulation in buildings and of building elements - Part 1: Airborne sound insulation
- ISO 717-2 Part 2: Impact sound insulation

To create the white / pink noise required for these measurements, the Random Noise Generator SF-06 is used. Suitable impact sound sources are the Tapping Machine FI-01A, the Bang Machine FI-02, and the Impact Ball YI-01.

For evaluation complying with the standard stipulations, frequency analysis must also be performed. The required measurement results are reliably obtained with the Precision Sound Level Meter NA-28 in combination with the Building Acoustic Card NX-28BA. RION also offers the Multi-Channel Signal Analyzer SA-02 series and the Airborne/Floor Impact Sound Insulation Measurement Software As-20PE5.



11

Sound Intensity · <u>Sound</u> source location

Sound intensity is defined as the sound energy coming from a specific direction. By measuring sound intensity, it is possible to assess the sound power level of a sound source or measure the sound insulation performance of materials without having to use an anechoic chamber or other special equipment. It also is useful when examining from which part of the sound source a given noise emanates or which part of a material allows sound to pass through, and allows visualization of the results. For sound intensity measurement, the Sound Intensity Probe SI-31I is connected to a Multi-Channel Signal Analyzer of the SA-02 series, and the Sound Intensity Measurement Software AS-15PA5 is used.

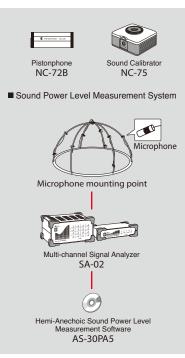
By choosing the 3-Axis Simultaneous Measurement Intensity Probe SI-33I, results for a three-dimensional grid can be obtained in a single operation. Using the sound source location software AS-16PA5, the sound incidence direction can be displayed in combination with a camera image.

AS-16PA5

surement Software AS-15PA5

12

Sound Power Level


Even if emitting noise of the same energy level, the actual ambient noise level in the vicinity of mechanical or electrical machinery, office equipment etc. will differ, depending on various conditions. When predicting expected noise levels associated with installation or removal of a given piece of equipment, or when assessing the equipment as a single noise source, it is important to determine the sound power level which represents the acoustic energy produced by the equipment per unit of time. The basic components that are required when configuring a system to measure the sound power level of a sound source are suitable microphones and preamplifiers, a Multi-Channel Signal Analyzer of the SA-02 series, and sound power level measurement software.

- Sound power level measurement system using a hemi-anechoic chamber
 - ISO 3745
 - ISO 3744

Calculates the sound power level according to the stipulations of the respective standard.

- Sound power level measurement system using a reverberation chamber, wide-band)
 - ISO 3741

Calculates the sound power level according to the stipulations of the respective standard

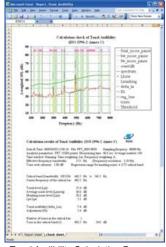
13 Sound quality evaluation

In conventional sound evaluation measurements, frequency weighting using the "A" characteristics is commonly used for measurements intended to express the noise level. However, sound quality is increasingly gaining recognition as an aspect that is significant in evaluating the sound emitted by various kinds of products. Consequently, various parameters expressing sound quality such as loudness, roughness, and sharpness have come to be widely recognized as useful for evaluating sound. To measure these parameters, a system consisting of microphone and preamplifier, Multi-Channel Signal Analyzer of the SA-02 series, and sound quality evaluation software is suitable.

Loudness

Loudness is an aspect that expresses the subjective volume of a sound as perceived by human hearing. ISO 532 defines the standard method which is used to calculate loudness as an evaluation parameter.

- Sharpness Sharpness is an evaluation parameter that expresses the sharp metallic quality of sound in the high frequency range.
- Roughness
 - Roughness is an aesthetic evaluation parameter that expresses the perceived roughness dependent on modulation frequency, modulation rate, and sound pressure level changes.



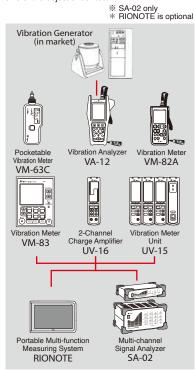
14

Pure tone evaluation

The Tonal Audibility Calculation Program (Excel macro) can be used for pure tone evaluation. ISO 1996-2:2007- Annex C

- Assessing the audibility of tones in noise The aim of the objective method is to assess the prominence of tones in the same way as average listeners based on the psychoacoustic concept of critical bands.
- Target sounds Steady and varying tones, narrow-band noise, low frequency tones

Tonal Audibility Calculation Program


Measuring Instrument Combinations

Vibration measurements are most commonly carried out using PV series piezoelectric accelerometers as the sensor providing the input signal. Because there will be considerable differences in the magnitude of vibrations, depending on the measurement object, RION offers a wide range of accelerometers with different sensitivity levels and dimensions. Velocity information can be obtained by integrating the acceleration figures. Velocity can then be converted to displacement by further integration. The RION product lineup in the category of portable vibration meters includes the Pocketable Vibration Meter VM-63C, the Vibration Meter VM-82A, and the Vibration Analyzer VA-12 with built-in FFT analysis function. In the larger stationary type unit category, RION offers. The Vibration Meter VM-83, which also supports servo accelerometers, and the UV series charge amplifiers, such as the UV-15 and UV-16, which support a multi-channel configuration for simultaneous measurement.

To perform vibration analysis, the Vibration Analyzer VA-12, the Portable Multi-function Measuring System RIONOTE with FFT analysis* and 1/1, 1/3, and 1/12^{**} octave band analysis* capability, or the Multi-Channel Signal Analyzer SA-02 can be used.

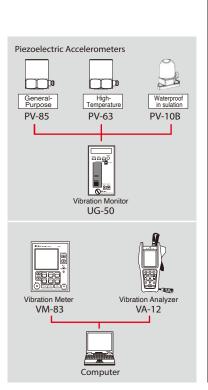
When measuring vibration characteristics of machine parts and facilities, a vibration source is commonly used. Various types of containing, different output levels, are available to match the size of the object under test.

16

Vibration Monitoring

Vibration monitoring is an important tool for detecting symptoms of impending problems in machinery and for implementing preventive maintenance. In the semiconductor industry and other sectors that require high accuracy manufacturing, vibration monitoring helps to improve yield and facilitates quality control. There are two basic patterns for vibration monitoring: continuous monitoring where vibration levels are automatically monitored on an ongoing basis and an alarm is triggered when a certain level is exceeded, and periodic monitoring at regular intervals combined with trend analysis designed to assess and manage the condition of the equipment.

RION offers a range of vibration accelerometers suitable for constant monitoring including general-purpose, high-temperature, water-proof and insulated types, and accelerometers with integrated preamplifiers. The Vibration Monitor UG-50 is suitable for such applications and offers the capability to output an alarm signal.


The Vibration Analyzer VA-12 and the Vibration Meter VM-83 can be connected to a computer for configuring a constant monitoring system.

17 Industrial Machinery Equipment Diagnosis

All machines use either rotation, reciprocal movement, impact, or some other form of motion to achieve their purpose. If a problem occurs somewhere, unwanted vibration will increase. Normally, simple diagnosis is carried out on a regular schedule to establish the normal/abnormal status of equipment. When a problem is detected, precision diagnosis is performed to obtain in-depth knowledge about the condition.

Products suitable for simple diagnosis include the General-Purpose Vibration Meter VM-82A and the Pocketable Vibration MeterVM-63C. These allow checking multiple pieces of machinery within a short time, using simple procedures.

For detailed equipment diagnosis, the Vibration Analyzer VA-12 with integrated FFT analysis function or the RIONOTE Multifunction Measurement System together with the Vibration Analysis Program SX-A1VA are well suited.

18

Whole-Body Vibration Measurement

Vibrations are transmitted to the human body via the feet when standing, via the posterior when seated, and via the back when leaning on a backrest.

The influence of such vibrations on humans can be evaluated under many aspects including vibration perception, comfort, health hazards, and motion sickness. ISO 2631 specifies many different frequency compensation circuits for judging vibration depending on direction as well as rotational vibration. ISO 2631 compliant measurements can be made by using the 3-Axis Vibration Meter VM-54 combined with the Whole Body Vibration Card

VX-54WB/VX-54WB1 or Marine Vibration Card VX-54WS.

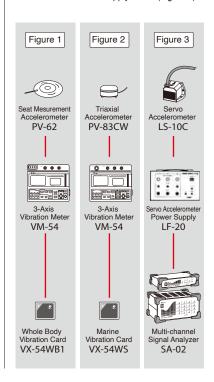
For measurement of seat vibrations and evaluation of ride quality, the Seat Measurement Accelerometer PV-62 is mounted to the measurement target and connected to the 3-Channel Preamplifier VP-80, as shown in (Figure 1).

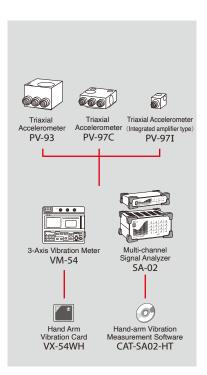
For evaluation of buildings and ride quality in ships, vibration measurement can also be carried out with the Accelerometer PV-83CW (supplied with VX-54WS), as shown in (Figure 2). When making motion sickness related measurements, the frequency range from 0.1 to 0.5 Hz is relevant. A suitable measurement setup consists of the Servo Accelerometer LS-10C for detecting vibrations, connected to Multi-Channel Analyzer SA-02 via the Servo Accelerometer Power Supply LF-20 (Figure 3).

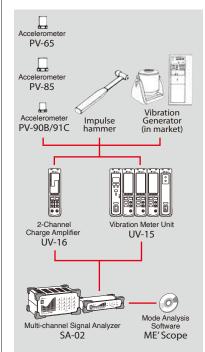
19 Hand-arm Vibration Measurement

In the work environment, hand-arm vibration leading to an ailment called Raynaud's disease can pose a serious problem. This kind of vibration-related ailment, where blood circulation in the hand and fingers decreases causing them to appear white, is often due to the use of chain saws, rock drilling machines and other hand-held or hand-guided power tools that produce vibrations. ISO 5349 compliant quantitative evaluation of such vibrations is possible by using the 3-Axis Vibration Meter VM-54 together with the Hand-Arm Vibration Card VX-54WH.

To devise measures for preventing such vibrations, the vibration exposure can be determined by a Triaxial vibration component measurement performed on the handle of the tool in guestion. For this purpose, the Triaxial Accelerometer PV-93/97C/97I or multiple single-axis accelerometers PV-90B/90I are combined with the 3-Channel Preamplifier VP-80 and connected to the VM-54 in which the Hand-Arm Vibration Card VX-54WH has been installed. It is also possible to measure the hand-arm vibration using the Multi-Channel Signal Analyzer SA-02 series with the software CAT-SA02-HT.

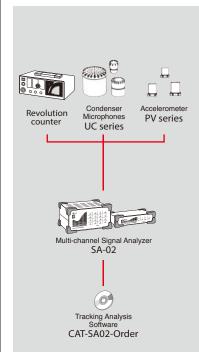



Mode Analysis


Analyzing the state and type of vibrations occurring in objects is an important approach that helps to detect early signs of problems, prevent breakdowns, and reduce the emission of noise. Test mode analysis is a method that uses vibration modes for creating models of vibration patterns. It is especially useful in exploring causes and countermeasures for resonance phenomena and other vibration and noise related problems. An impulse hammer is used to create a

controlled impact, and the resulting vibrations are measured in 3 directions on the entire surface, using suitable accelerometers such as the PV-90B/91C. A Multi-Channel Analyzer of the SA-02 series and the Mode Analysis Software ME Scope are then employed to perform the mode analysis. A large number of transfer function peaks can provide information about normal mode vibration frequency, mode shape, attenuation coefficient and other mode parameters.

Separate structure change simulation software makes it possible to study anticipated vibration mode changes that will result from physical changes to the machinery or the supporting structure. External force response analysis is also possible.

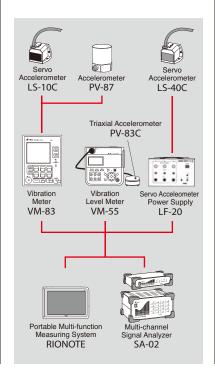

21

Tracking Analysis System

Nearly all kinds of rotating machinery such as car engines and electric motors produce vibrations that depend on their revolution speed and gear ratio. Such vibrations then become the source of noise which contains predominantly frequency components resulting from the vibrations. Because the revolution speed of rotating machinery changes over time, it is effective to perform frequency analysis in sync with the changing revolution speed. This process is called tracking analysis. There are several types of tracking

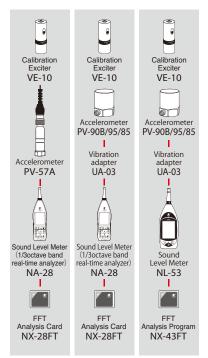
analysis, as described below.

- Harmonics ratio analysis Using the basic rotation speed as the fundamental, the higher-order harmonics components (2nd order, 3rd order...) are analyzed according to the rotation speed change.
- RPM tracking analysis
 This is a special form of harmonics ratio
 analysis, where the level change at one
 frequency or harmonic is plotted on a graph
 pegged to the rotation speed change.
- Mode circle Another form of harmonics ratio analysis, where the amplitude and phase change at one frequency or harmonic according to the rotation speed change is plotted on a coordinate system.
- Spectrum map The change in spectral pattern when the rotation speed is changed is plotted continuously and the level change is analyzed in a macro reference frame.
- Campbell diagram The rpm dependent spectral change is plotted on a graph where the amplitude value is represented by the diameter of a circle.



22 Measurement of Low-Frequency Microvibrations

Low- level, low-frequency vibrations must be measured in various instances, such as when measuring minute floor vibrations to assess the occupation comfort of a building, checking for microvibrations in a clean room for semiconductor manufacturing or testing the efficiency of vibration damping systems for precision machinery. The Servo Accelerometer LS-10C/40C, Vibration Level Meter VM-55 or the high-output accelerometer PV-87 in combination with the Vibration Meter VM-83 are suitable for such purposes. It is also possible to perform frequency analysis and evaluation with the Multi-Channel Signal Analyzer SA-02 series, Portable Multi-function Measuring System RIONOTE*.


The evaluation of floor vibrations uses the floor response waveform for determining vibration frequency, displacement, velocity, acceleration and attenuation constants. These are then compared to reference curves for actual evaluation. For testing the efficiency of vibration damping systems, sensors are mounted on the floor and to the mounting bed of the object under test.

 RIONOTE is optional (FFT analysis program or 1/3 Octave analysis program can be chosen.)

23 Vibration measurement with sound level meter

By connecting a vibration sensor to the sound level meter, measurement of vibrations becomes possible.

Outline **NOISE AND SOUND LEVEL METERS**

Sound and Noise

What is commonly called "sound" is actually vibrations of air. Various objects, when rubbed or tapped, can become sound sources. The vibration of the sound source object causes the adjacent air to vibrate and these vibrations are transmitted to the ear where they are perceived as sound.

In our everyday environment, there are many different kinds of sounds, but humans do not respond to all of these. Rather, we subjectively make decisions and focus only on certain sounds that we want to hear. Other sounds that are not important, often inconvenient or disturbing, are sounds that are undesirable or unnecessary. Such sounds are called "noise". Rather than containing certain physical properties, what defines noise is a subjective characteristic that is specific to the listener. Sound that is too loud, unpleasant, or that draws attention in a certain direction is commonly judged as noise.

Physical and Sensuous Value of Sound

The physical magnitude of sound is sound pressure, representing tiny changes in atmospheric pressure, the unit measured by Pascal (Pa). The range of sound pressure that can be detected extends from 20µPa to 200 Pa, a difference of a factor of as much as 10 million times. The loudness of a sound as perceived is proportional to the logarithmic value of the sound pressure. The sound magnitude is expressed as a sound pressure level in decibel (dB), using the smallest sound that can be heard (20µPa) as reference, and covering a range from 0 dB to 140 dB.

The sensitivity of the human ear differs depending on the frequency of the sound. The same sound pressure can be perceived differently at different frequencies. When a certain sound is perceived equal to the sound pressure level PdB at 1 kHz, the loudness level of that sound is said to be Pphon. Figure 2 shows the relationship between the loudness level of a pure tone and its frequency. The curves in this graph are called equal loudness curves. As can be seen from the graph, the physical magnitude of a sound and its subjective magnitude are not the same. Rather, there is a complex relationship between the two.

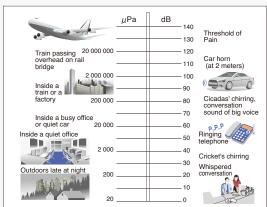


Fig. 1 Sound pressure and sound pressure level

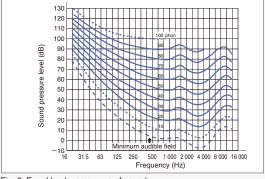


Fig. 2 Equal loudness curves of sound

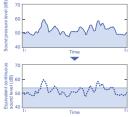
Sound Level and Sound Level Meter

A reverse curve corresponding to the equal loudness curve at 40 phon (ISO 226 : 1987) is applied to the sound pressure.

The resulting level is called sound level and is expressed in dB.

However, the equal loudness curve in ISO 226:2003 is close to 60 phon.

What is equivalent continuous sound level Leg?


Equivalent continuous sound level Leq is used for environmental noise evaluation.

Equivalent continuous sound level The equivalent continuous sound level L_{eq} is the constant sound level which has the total sound energy equivalent to the energy of a actual fluctuating sound produced over a given period of time. As an example, consider the illustration at right. In the top graph, the sound level fluctuates from 47 to 60 dB within the time interval *t*1 to *t*2. When the total energy of this sound is equated to a constant sound level over the same period, the 53 dB value (bottom graph) is obtained.

equivalent continuous sound level can be automatically

calculated by a sound level meter with built-in Leg function

Leq measurement

Standards of Sound Level Meters

Sound level meters are divided into two categories: Class 1 and Class 2. There is a difference in performance between these classes. Perfomance specifications and test methods of sound level meters are specified in the international standards IEC 61672 series. Two performance categories, Class 1 and Class 2, are specified in the standard. Basically, specifications for Class 1 and Class 2 sound level meters have the same design goals and differ in the tolerance limits. Tolerance limits for Class 2 specifications are greater than, or equal to, those for Class 1 specifications.

Some common terms used having with special meanings and relating to sound level meters are listed below.

①Frequency weightings

The different sensitivity of the human ear at different frequencies is represented by the "A" and "C" weightings as shown in Figure 3. When measured with the "A" weightings, the result is close to the subjective sound level impression. When measured with the "C" weightings, the result is close to the sound pressure level (physical quantity).

Time weightings

Sound level is obtained by averaging the signal corresponding to the sound pressure raised to the second power. Two kinds of time weightings are used, which differ in the time constant used for averaging: F (Fast, time constant 125 ms) and S (Slow, time constant 1 s). For normal noise measurements, the F-time weighting is used. In some countries, a third characteristic called Impulse is used for the measurement of impulsive and impact noise.

③Type approval and test certification (In Japan)

Type approval refers to a process by which the government tests sound level meters provided by domestic manufacturers and importers and ascertains that their construction and performance is in accordance with the stipulations of the Measurement Act. When a sound level meter model has been type approved, most items can be omitted during testing for individual product certification.

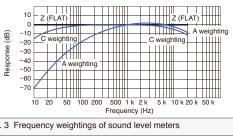


Fig. 3 Frequency weightings of sound level meters

(Fast) S (Slow) -evel Time

Fig. 4 Time weightings of sound level meters

Sound Level Meter Types

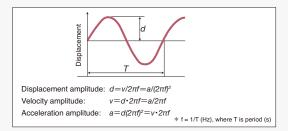
Many different kinds of sound level meters exist. The optimum device to be chosen will depend on the purpose of the measurement, the required accuracy, and the data processing method that is to be employed. Some of the main categories are listed below: ①Sound Level Meter class 1/class 2 (NL series)

These are the most common types of sound level meters, whose performance are defined by the applicable standards. The difference is in accuracy.

2 High-Precision Measuring Amplifier

- A wide range of frequency and level range settings make this product suitable for many different measurements.
- ③Sound Level Meter with Analysis Functions (NA-28, NL-63 with NX-63RT/43FT, NL-53/43 with NX-43RT/43FT)
- These are portable sound level meters with real-time analysis or FFT analysis functions. ④Environmentel Noise Monitor
- This type of device performs data processing according to standards and regulations. It serves for measurements as well as for observation and monitoring of noise.
- Sound Level Meter (With low-frequency sound measurement function). (NL-63 with NX-63RT)
 - Allows G-weighted sound level measurement in conjunction with 1/3 octave real-time analysis.
- 6 Sound Level Display

Designed for mounting in outdoor urban locations, this type of device can display the ambient sound level at a specific point.


Outline VIBRATION AND VIBRATION METERS

Importance of Vibration Measurement

Normally, vibrations arising in an industrial or residential environment are clearly an unwanted phenomenon, except in some special cases. Such unwanted vibrations are not only unpleasant to humans but they can also shorten the life of machinery, impair product quality, and cause defects and breakdowns. Sound arising from vibrations is also an environmental problem. Finding solutions to the multi-faceted problems presented by vibrations therefore is an important and pressing task. RION vibration meters are effective tools used to collect information in a wide range of fields. These include the maintenance, monitoring and testing of machinery, product design and research, quality control, noise and vibration countermeasure research, evaluation of tools and vehicles according to labor environment and hygienic regulations, vibration pollution control, and seismographic data collection and disaster prevention.

How to Measure the Magnitude of Vibrations

There are three vibration parameters which can be used to express the magnitude of vibration: displacement, velocity, and acceleration. Which of these factors is used depends on the type of vibration and the measurement objective. The relationship between them in the case of a sine wave vibration is shown in the illustration below.

Units used for the magnitude of vibration are listed in the table below.

Displacement	mm,μm(1 μm=10 ⁻³ mm)	
Velocity	mm/s	
Acceleration	m/s ² , cm/s ² Gal(1 Gal=1 cm/s ²)	
Vibration acceleration	dB(re • 10 ⁻⁵ m/s ²) : JIS	

Vibration Meters for Mechanical Vibrations

When vibration meters are used for measuring machine vibrations, a suitable accelerometer must be selected depending on the type of mechanical. Accelerometers designed for low frequencies measure low acceleration levels and, thus, are highly sensitive. However, their larger size and mass result in low resonance frequency when mounted. Accelerometers for high frequency measure high acceleration levels and are normally compact and lightweight with low sensitivity. RION offers a selection of piezoelectric accelerometers, covering a wide frequency range. By combining an accelerometer with a vibration meter that is designed to make the best use of its characteristics, a wide range of measurements can be performed with optimum efficiency.

Piezoelectric accelerometers are normally used for measuring vibrations with a frequency of more than 1 Hz. This type of accelerometer has good high-frequency characteristics and is especially suited for measuring vibrations in the upper frequency range. Major applications are vibration monitoring and diagnostic checks of mechanical installations in industrial plants. Piezoelectric accelerometers generate a certain amount of low-frequency noise when ambient temperatures change (so-called pyronoise). Depending on the application, the accelerometers must therefore be protected from temperature changes. When velocity and displacement to be used for evaluation are obtained by integrating acceleration, pyronoise will to be evaluated as integral products, pyronoise will be amplified and must therefore be given special consideration. With the exception of types containing, piezoelectric accelerometers require a charge amplifier.

What is the piezoelectric accelerometer?

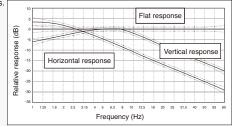
Fig. 1 Piezoelectric accelerometer types

ciple of shear-type accel

Certain types of crystals will generate an electrical charge on their surface when pressure is applied. The amount of the charge is proportional to the external force. This phenomenon is called the plezoelectric effect, and the vibration acceleration sensor called a plezoelectric accelerometer makes use of it. Piezoelectric accelerometers can be made compact and lightweight, Piezolectric accelerometers can be made compact and lightweigh allowing them to cover a wide with variation frequency range. Accuracy and reliability are also very good, and handling is simple. Thanks to these characteristics, piezoelectric accelerometers are widely used for many general applications, and also serve as reference accelerometers. There are two types of piezoelectric constructions and the server of the se accelerometers, namely shear-type and compression-typ which differ in the way the piezoelectric element is used. ion-type

accelerometer is constructed in such a way that the pi ent is subjected to a shear force. Sensitivity is high, w element is subjected to a shear force. Sensitivity is high, which a for small dimensions. Pyronoise (pyroelectric output) caused by temperature changes is low, which is advantageous for measur low-level vibrations and vibrations in the low frequency range. This type is useful for monitoring vibrations in machinery and buildings and for seismometer application

Compression-type accelerometer


er employs a weight on top of the ctric element. The structure is simple and me strength is high, making it suitable for high acceleration levels and ck measurements.

When using a piezoelectric accelerometer with a TEDS compliant measuring device, sensitivity setting must be performed. In case of a TEDS compliant piezoelectric acce eter, sensitivity setting is not required

Measurement of Vibration Pollution (Vibration Level Meter)

The evaluation of vibrations considered as environmental pollution uses the vibration level (dB), which is based on the pattern of human sensitivity to vibration. This is the same principle employed for the measurement and evaluation of sound pressure levels considered noise. Compensation according to human sensitivity characteristics is applied to the measured physical quantity (acceleration in the case of vibration pollution), and the resulting value forms the basis of evaluation

The illustration below shows the frequency response that is stipulated by JIS C 1510 for vibration level meters

Allowable response range for vibration level meters

Equipment Diagnosis

①Types of equipment maintenance Depending on the importance of the equipment, there are various kinds of maintenance, required. In each case, the objective is to achieve maximum efficiency at minimum cost.

Breakdown Maintenance (BM)

- The principle here is to repair equipment when it breaks down.
- •Time-Based Maintenance (TBM)

Parts are replaced at regular intervals regardless of breakdown and schedules are established for routine checks, disassembly and repairs. This is a kind of Preventive Maintenance (PM).

Condition-Based Maintenance (CBM)

The operational condition of machinery is regularly measured to determine the degree of deterioration or the existence of other factors equipment breakdown. Mechanical Checks, disassembly, repairs, and parts replacement are then carried out as a result.

This is a kind of predictive maintenance (PRM).

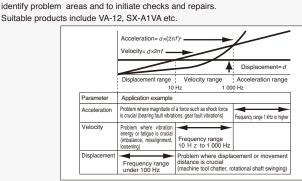
2 Equipment diagnosis by vibration measurement

The vibration method diagnosis by vibration measurement involves measuring vibrations of the equipment in operation for early detection of problems and taking optimum countermeasures. This is effective for key equipment directly linked to manufacturing facilities, particularly rotating (machines).

3)Frequency response on vibration parameter

Depending on the vibration frequency, each amplitude response of displacement, velocity and acceleration will be different. During equipment diagnosis, the following distinctions must be made; It is important to have a clear understanding of which type of vibration is likely to increase and should use an appropriate vibration parameter depending on abnormality. In some cases, both velocity and acceleration may have to be measured.

④Diagnosis methods


Simple diagnosis

For this type of diagnosis, vibration measurements are carried out periodically by service personnel; The trend management of measurement results are then used for preventive maintenance of equipment.

Suitable products include VM-82A, VM-63C, VA-12, SX-A1VA etc.

Precision diagnosis

Vibration signals are processed using FFT analysis or other similar techniques to identify problem areas and to initiate checks and repairs.

Vibration parameter

Outline FREQUENCY AND FREQUENCY ANALYZERS

Frequency Analysis and Frequency analyzers

Normally, sound and vibration phenomena occur with specific frequency characteristics. Multiple frequency components coexist in complex patterns. Determining the respective levels of these frequency components is called frequency analysis.

Countermeasures for noise or vibrations will not be effective over the entire frequency range. Therefore, target values and evaluation criteria must be set separately for the various frequency bands.

Frequency analysis classification

Frequency analyzers can be grouped in various categories, according to usage purpose, as listed in Table 1.

Table 1 Frequency analysis types

Purpose	Filter	Frequency analyzer
 Evaluation of sensory impact of sound and vibration Evaluation of countermeasures Materials development and evaluation 	Constant ratio 1/1 octave band 1/3 octave band	NA-28 SA-02 SX-A1RT (RIONOTE) NX-63RT (NL-63) NX-43RT (NL-43/NL-53) VX-55RT (VM-55)
 Identify noise and vibration phenomena Noise and vibration countermeasures Materials development and evaluation 	Constant width FFT (narrow-band analysis)	NX-28FT (NA-28) SX-A1FT (RIONOTE) SA-02 NX-43FT (NL-43/53/63) VA-12

①Frequency analyzers

Devices for the frequency analysis of sound and vibrations can be divided into real-time analyzers and FFT analyzers, depending on their purpose. Figure 1 shows the analysis results of the same signal waveform processed on 1/3 octave band analysis and FFT analysis. A real-time analyzer employs a number of bandpass filters with a constant ratio (1/1,1/3, or 1/N octave bands). Frequency analysis performed with such a device serves mainly to assess the sensory impact of sound or vibration phenomena.

The FFT analyzer is calculated by constant width band. Frequency analysis performed with such a device serves mainly to assess the physical magnitude of sound or vibration phenomena.

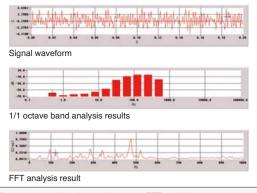


Fig.1 1/1 octave band analysis results, FFT analysis result

2 Constant ratio type filter and constant width type filter

Filters used in frequency analyzers are of two types: constant ratio and constant width. In a constant ratio filter, the width of the passband varies in proportion to the center frequency while in a constant width filter, the passband width is always the same. Figure 2 illustrates the underlying principle. When a logarithmic scale is used for the frequency axis, the bandwidth of the constant ratio filter is shown as a constant, while the bandwidth of the constant width filter is shown as becoming narrower towards higher frequencies. When plotting frequency analysis results on a graph, it is therefore common to use a logarithmic frequency axis for a constant ratio ration filter and a linear scale for a fixed. ③Filter specifications

Filter characteristics for octave band and 1/N octave band filters (Frequency Analyzers) are specified in JIS C 1513-1. Internationally, the IEC 61260-1 is used. The fact that filter specifications are governed by international standards means that data can be easily compared. However, for FFT analyzers there are no JIS or international standards. Therefore, different analysis results may be obtained depending on the performance and settings of the analyzer in use.

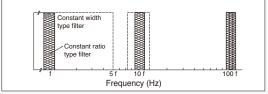


Fig. 2 Bandwidth representation for constant ratio and constant width filter on logarithmic scale

Different Ways of Using Frequency Analyzers

and propagation characteristics measurement.

vibration and for evaluating countermeasures is 1/1 octave and 1/3 octave analysis.

An FFT analyzer serves for assessing the physical aspects of sound or vibration phenomena and for devising suitable countermeasures. General applicability is good because analysis can be carried out in the time domain as well as in the frequency domain. Frequency resolution is excellent, which is essential for locating the sources of noise and vibrations, and the relationships between signals in multiple channels (for example, sound and vibration can also be explored. FFT analyzers are extensively used in sound and vibration analysis of cars, machinery, computers, electric home appliances, etc., and in the development and evaluation of damping

materials. Measurement types include mechanical impedance, mode analysis,

The result of FFT (Fast Fourier Transform) analysis is characterized by constant bandwidth. In the input of an FFT analyzer, a low-pass filter (anti-aliasing filter) is used

to remove signal components other than those of the bandwidth to be analyzed.

probability density function. In the frequency domain, spectrum, dual-channel cross-spectrum, transfer function, and coherence function can be calculated. Intensity measurement, as well as 1/1 and 1/3 octave band analysis (octave synthesis), can be

A/D

Fig. 3 FFT spectrum analyzer (spectrum analysis)

converter

Then, the A/D circuit converts the input into a digital signal, and time window processing is carried out. Finally, FFT processing is performed, resulting in discrete frequency

The FFT analyzer can also provide amplitude information and phase information. In the time domain, this includes time waveform, auto-correlation, cross-correlation, amplitude

carried out, and mode analysis and tracking analysis for the entire system are possible.

Constant-width filters

Time

buffer

Frequency range

FFT

processing

-o Output/

display

intensity measurement, tracking analysis, propagation characteristics measurement, and sound quality measurement. FFT analyzers are indispensable tools in the fight

Averaging can be carried out using the same frequency weighting and time weighting as the sound level meter or vibration level meter. This makes it possible to evaluate the actual impact that the noise or vibration phenomenon has on humans. The technique is used for many different tasks such as sound insulation measurements for architectural acoustics, evaluation of indoor noise, sound power level measurements, evaluation of building materials, sound quality evaluation,

①Real-time analyzer The most commonly used method for assessing the sensory impact of noise and

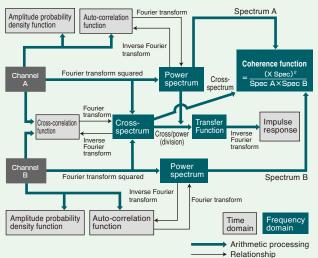
⁽²⁾FFT analyzer

FFT analyzer

analysis. 2 Signal processing

against noise and vibrations.

Input

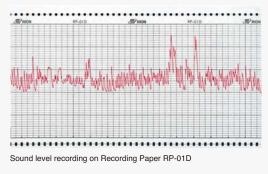

Low-pass

filte

FFT and Signal Processing

Outline

table 2 Relationship btween varioas FFT analyzer functions



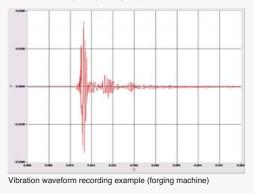
Outline **RECORDING SOUND AND VIBRATION**

Sound and Vibration Level Recording

①For recording the level of sound and vibrations, a device conforming to JIS C 1512 Level recorders for recording sound level and/or vibration level is used. Such a device uses the output signal of a sound level meter or vibration level meter.

The operation characteristics of the recording pen can be selected.

- (2) When a sound level meter or vibration level meter with integrated SD card slot is used, level data can be directly recorded on a memory card, thereby realizing long-term recording. The data stored on the memory card can later be processed on a computer, either using dedicated software or a general application. Sound level and vibration level waveform information can be displayed and stored, Various other Functions are also possible (NL-43/53/63, VM-55).
 - Memory card capacity and storage time for sound or vibration level (instantaneous value store every 100 ms)

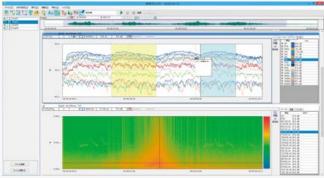

	Sound level meter	Vibration level meter (3-axis)
512 MB	2.4 days	2.5 days

Data management software for environmental measurement AS-60

Sound and Vibration Waveform Recording

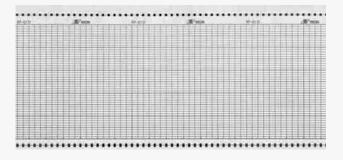
①Sound pressure waveform and vibration acceleration waveform information can be recorded for analysis making it possible to examine the transient characteristics of, for example, impulsive noise and vibration from blasting, gun fire, collision impact and other such phenomena. Waveform peak values can be measured, and frequency analysis performed.

- [®]Suitable products for waveform recording are waveform recorders (NX-28WR/NX-43WR, SA-02/RIONOTE) or data recorders (DA-21). These products use SD cards as recording media. The recorded data can be played back and post-processed with analyzers or analyzer software and recorders.
- 3 Waveform data recorded on a memory card can be displayed and analyzed using dedicated application software (such as the Waveform Analysis Software AS-70). Recorded sound data (WAVE files) can be played back as real sound using Media Player or other suitable software.


DA-21

				Frequency	range (Hz)		
		100	500	1 000	5 000	10 000	20 000
se	1	1066 h 40 m	213 h 20 m	106 h 40 m	21 h 20 m	10 h 40 m	5 h 20 m
chan	2	533 h 20 m	106 h 40 m	53 h 20 m	10 h 40 m	5 h 20 m	2 h 40 m
Number of channels	3	355 h 32 m	71 h 06 m	35 h 33 m	7 h 06 m	3 h 33 m	1 h 46 m
Num	4	266 h 40 m	53 h 20 m	26 h 40 m	5 h 20 m	2 h 40 m	1 h 20 m

Reference for maximum recording time with 2 GB SD card Sampling frequency: frequency range × 2.56 (or 2.4) % Use only RION supplied cards for assured operation.


Waveform analysis screen example

Waveform analysis screen example

Sound Level/Vibration Level Measurement Paper

①Recording Paper for level Recorder RP-01D (for 1ch)

🕼 Knowledge in a Nutshell

What is percentile noise level?

These are evaluation quantities used to measure sound occurrence which is irregular and where its level fluctuates drastically. A certain time period is considered for the measurement. When the sound level exceeds a certain level for N % of the time under consideration, its level is called the N percentile level. For example, if the measurement time is 10 minutes and 55 dB was exceeded for a total of 5 minutes, 55 dB is the 50 % percentile sound level (median value). If 55 dB was exceeded for a total of 30 seconds, 55 dB is L_5 (5 % percentile level).

What is sound in the low frequency range like?

The range from 1 Hz to 100 Hz is commonly referred to as the low frequency range. In particular, acoustic waves between 1 and 20 Hz, i.e. below the threshold of hearing, are called infrasound or subsonic waves. The NL-63 is a sound level meter that covers not only the range of audible noise but also allows measurement of the low-frequency sound range.

Noise in the audible range is often described as noisy or clamorous, referring directly to the quality of the sound, while low-frequency energy in the barely audible or inaudible range is usually described in psychological terms such as being unpleasant or oppressive. Normally, with a 10 Hz infrasound, a sound pressure level of 90 dB or more is said to be noticeable to humans, while at 20 Hz, the threshold is 80 dB. At higher levels, the phenomenon is experienced negatively, and the psychological terms mentioned above tend to be used.

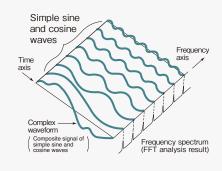
What is G weighting?

To evaluate the psychological and physiological effects of infrasound in the range from 1 to 20 Hz, the G weighting curve was established as ISO 7196 in March 1995. The curve is referenced to 10 Hz and uses the threshold values for human perception of infrasound. The principle is the same as that for A characteristics weighting employed in sound level meters, which uses 1 kHz as reference and simulates the characteristics of human hearing in the audible range.

What is frequency analysis?

Sound and vibrations commonly have complex waveforms consisting of many different frequency components. The process of dividing such a complex waveform into discrete frequency components in order to examine the nature of the sound or vibration is called frequency analysis. Commonly used types of frequency analysis are 1/1, 1/3 octave band analysis, and FFT analysis.

What are 1/1 octave band analysis and 1/3 octave band analysis?


Our perception of the pitch of a sound is mainly determined by its frequency. The perceived difference in pitch between sounds is not proportional to the difference in frequency but to the ratio of the frequency. The bandpass filters used for frequency analysis come in two types: fixed ratio filters, where the ratio between the upper boundary frequency and lower boundary frequency of the filter is constant, and fixed width filter, where the difference between the upper boundary frequency and lower boundary frequency of the filter is constant. (For details, see page 35.) Analysis with the aim of evaluating noise normally uses fixed ratio filters (since) these can more easily be made to approximate the subjective hearing impression of humans. A frequency is called a 1/1 octave bandpass filter. The nominal center frequencies of a 1/1 octave band filter are 31.5, 63, 125, 250, 500, 1 000, 2 000 Hz, and so on. In other words, adjacent filters have a ratio of 2. When detailed frequency is required, 1/3 octave filters are used, which are centered on the frequencies 31.5, 40, 50, 63, 80, 100, 125 Hz, etc. Here, the adjacent filters have a ratio of 1.25 (one third of an octave).

What is FFT (Fast Fourier Transform) analysis?

This method uses an algorithm called "Fast Fourier Transform" to divide a component signal with a seemingly irregular time cycle into a set of frequency spectrum components that make it possible to detect regularity in the signal.

FFT analysis is widely used for voice analysis, quality evaluation and fault detection in automobiles, electrical appliances and other products using acoustic and vibration signals.

Fourier Transform is named after the French mathematician Fourier (1768 to 1830) who postulated that any periodic function can be expressed as the sum of the trigonometric function. In 1965, Cooly and Tukey developed an algorithm based upon this concept and, several years later, this became available as an FFT program.

What is an sound intensity measurement?

This kind of measurement allows sound to be considered as a quantity with a direction component (vector quantity). The instantaneous sound pressure passing a point in a fluid and the instantaneous particle velocity are multiplied, resulting in the intensity vector (vector quantity). In other words, the sound power (W/m²) that passes the unit area in the unit time is the sound intensity. By measuring the sound intensity, the sound distribution on the measurement plane and the depth of the sound source can be visualized.

Quality Management

Registration and certifications

Designated service provider for special measurement instrument Service provider for medical equipment ISO 9001 Certification (12 100 24501 TMS) ISO 13485 Certification (Q1N 11 01 54475 141) ISO/IEC 17025 (Accredited Calibration Laboratory) (ASNITE 0132 Calibration)

See page 2.

JCSS (Japan Calibration Service System) Accredited Calibration Laboratory (JCSS 0217)

Registered for Certification of Measuring Instruments (Sound Pressure Level)

Anechoic chamber

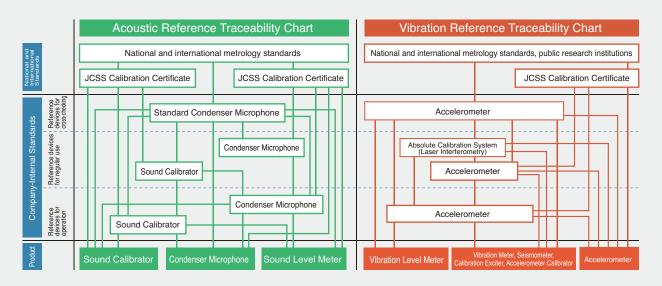
Quality Assurance and Reliability Testing

Regarding measuring instruments, high quality and reliability mean not only free of defect or from breakdown, but the product must also return specified measurement values within a specified range and period. In other words, users of the product must always be able to place full trust in its performance as a measurement device. This is the basic tenet of RION as a measurement device manufacturer.

Besides the above quality and reliability requirements, there are various other demands that are rapidly evolving and changing the marketplace for measuring instruments. Some q

desire are compact size, ease of use, and versatile functionality. In order to create products that meet these demands, RION CO.,LTD. is drawing on lengthy experience and field and reliability data accumulated over the course of many years from the design stage onwards, RION follows a systematic and well thought-out program for ensuring that our products will accomplish exactly what they are designed to. Important aspects of this process are the strict selection and management of parts and materials, extensive testing at every stage of development and production, and a thorough traceability system for ensuring compliance with national and international standards and industry norms.

Environmental test chamber for products



Absolute calibration setup for vibration accelerometers

Absolute Calibration of Vibration Accelerometers

The accuracy of measurement values when measuring length or weight is an important consideration, and the same applies for acoustic and vibration measurements. As a manufacturer of equipment for measuring sound and vibration, RION has developed various systems for the calibration of our products. These systems are traceable according to domestic and international standards to assure high calibration accuracy. They are employed in the manufacturing process and for quality control of sound level meters and vibration level meters.

RION has gained accreditation by the JCSS (Japan Calibration Service System) in the category of acoustic measuring instruments and vibration acceleration measuring instruments. This amounts to public recognition of the validity of our calibration methods within the scope of accreditation, and of their traceability to national measurement standards.

Other services offered by RION Group

Repair, checking, and calibration (in-house servicing)

Based on standards and procedure guidelines developed in house, we service, adjust, and calibrate products to bring them to the same condition as when shipped new.

Calibration bench

On-site servicing

For permanently installed equipment or products that cannot be moved, we offer on-site servicing.

Inspection certificate

After performing servicing and calibration in house, we offer application services for official public certification* for sound level meters, vibration level meters, and level recorders. We follow through until the official certification is obtained.

*Performed at the request of the customer

Maintenance/service contracts

- Yearly maintenance contract Based on a yearly maintenance contract, we provide periodic checks as well as emergency repair services in case of a problem.
- ② Spot maintenance contract This type of contract covers a one-time maintenance procedure based on procedure manuals (specifications).

ISO compliance documentation

We issue calibration certificates and traceability charts, as well as reference device calibration and inspection certificates.

Reference equipment used for calibration is traceability certified according to national standards.

Inspection certificates for individual products

Inspection certificates for individual products are issued according to RION specifications.

Measurement

We carry out measurements in the areas of general environmental noise, aircraft noise, sound absorption coefficient, and transmission loss. Other types of sound and vibration measurements can be arranged by consultation.

Aircraft noise measurement system

Custom-made cables

We manufacture cables used for RION measuring instruments to custom lengths. Cost is calculated based on cable type and length.

Company Outline

Kobayasi Institute of Physical Research

E-mail info@kobayasi-riken.or.jp URL http://www.kobayasi-riken.or.jp/

Research Facilities

The institute consists of a main building, a test chamber block for architectural acoustics, as well as eight other buildings with combined research and testing facilities. There are four test chambers for wall properties, two for floor properties, six reverberation chambers, one anechoic chamber, four semi-anechoic chambers, and one low-frequency test chamber. The building for the architectural acoustics division is counted among the best research facilities in Japan, making an important contribution to deepening the knowledge of architectural acoustics.

- Designated by Ministry of Land, Infrastructure and Transport Designated evaluation facility according to Architecture Basic Law (Boundary sound insulation structure)
- Registered as measurement certification facility Tokyo Metropolitan, No. 549 (Sound Pressure Level) No. 977 (Vibration Acceleration Level)

Anechoic Room

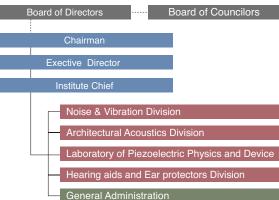
This specially constructed room is insulated from all outside sound and vibrations. Internal surfaces are covered with 60 cm thick glass fiber blocks for sound absorption, with increasing density in deeper layers. This design ensures excellent absorption characteristics for incident sound from any angle.

Interior of test chamber

Architectural Acoustics Division Test Chamber Block

This building houses four chambers (two facing pairs) for testing sound insulation of building elements (walls) according to ISO 140-1 and 140-3, as well as two floor test chambers.The two pairs of wall test chambers use different methods for fastening the test object cassette.

The two chambers which serve for floor impact sound testing have a floor base thickness of 200 mm and 150 mm respectively, to allow for testing with different structural parameters. Foundation Date: August 24, 1940 Chairman: Kohei Yamamoto (Doctor of Engineering) Location: 3-20-41 Higashi-Motomachi, Kokubunji, Tokyo, 185-0022 Japan Tel +81-42-321-2841


History

Based on a public grant by the industrialist Uneo Kobayasi, the concept for the Kobayasi Institute of Physical Research was worked out by Koji Sato, Takuzo Sakai, and others. In August 1940, permission to establish a non-profit foundation was granted by the Japanese Ministry of Education.

Originally, research was to cover the entire scope of physical science, but eventually the main focus came to be acoustics, which continues to this day.

In 1943, the development of a method to artificially grow Rochelle salt prompted the founding of Kobayashi-Riken Seisakusho Ltd., which is now Rion Corporation. The institute became a general incorporated foundation in April 2013.

Organization

Scale Model

Experiment Chamber This chamber is used for scale model experiments aimed at clarifying noise propagation characteristics and collecting data for noise prediction. It is a large acoustic chamber insulated from outside sound with a large, flat floor space. Except for the floor, all internal surfaces are treated with sound absorbing materials to prevent reverberation.

https://www.rion.co.jp/english/

RION was founded in 1944, with the aim of developing commercial products based on scientific work carried out at the Kobayasi Institute of Physical Research. Ever since its founding, RION CO., LTD. has upheld the belief that acoustics is a science of great importance to the well-being and welfare of society. RION has continued to introduce products based on this philosophy, aimed squarely at improving quality of life. A healthy and content society is the vision that guides our activities.

RION has three business divisions: "the Medical Instrument Division", "the Environmental Instrument Division", and "the Particle Counter Division". The Medical Instrument Division develops, manufactures, and sells hearing instruments, assistive listening devices, and medical equipment, mainly used in the field of otolaryngology (ear, nose and throat).

"The Environmental Instrument Division" develops, manufactures, and sells sound and vibration measuring instruments, including sound level meters, vibration meters and seismometers.

"The Particle Counter Division" develops, manufactures, and sells particle counters to measure particles in the air and liquids.

RION covers a wide product spectrum while remaining firmly rooted in the science of acoustics. RION products are used by individuals as well as governmental institutions, schools and universities, medical facilities, the service sector, agriculture and fishery industries, and all branches of the manufacturing industry. RION products are not only used domestically but exported to more than 60 countries all over the world. Response has been overwhelmingly positive.

RION products are tailored to the requirements and expectations of its customers. This has helped the company maintain a leading position in the industry. RION wants to use its momentum and forward-looking stance to help create a society that is truly easy to live in. The ultimate aim is to provide a safe and gratifying environment for all members of society.

Founded: June 21, 1944 Capital: JPYen 2.031 million (as of March 31, 2022) Sales: JPYen 22.635 million (fiscal year ended March 2022, consolidated) President & CEO: Kiyokatsu Iwahashi

Certifications (in acoustic and vibration measurement field) ISO 9001: 2015 Certification

ISO 14001: 2015 Certification

Designated manufacturer of special measurement instrument (Sound Level Meters, Vibration Level Meter)

Logo and Corporate Philosophy

The logo symbolizes confidence in the company itself and the quality of its products. Resembling the ring of a planet, the stylized ring around the "R" expresses awareness of the universe to which our environment belongs and in which RION strives for the betterment and well-being of mankind.

The coloring uses RION's traditional blue in two shades of intensity. Cyan signifies energy and vitality, and ultramarine represents intellect and style.

INDEX(Model)

A
AN-39D12
AN-39R12
AS-14PA5
AS-15PA535
AS-16PA535
AS-20PE5
AS-30PA534
AS-31PA534
AS-6010
AS-60RT10
AS-60VM22
AS-60VMRT22
AS-707, 10, 43
AS-70GV21
AS-70Viewer42

В

BP-17 11, 18, 27, 30, 31 BP-21A 15, 18, 31

С

•
CAT-CMP-BR
CAT-CMP-MTA ······38
CAT-CMP-ORD
CAT-CMP-REF
CAT-CMP-SQ
CAT-Report
CAT-SA02-AR
CAT-SA02-CMP0138
CAT-SA02-CPWL ······37
CAT-SA02-HT
CAT-SA02-Order ······36
CAT-SA02-Pro
CAT-SA02-SQ
CAT-SA02-TH
CAT-SA32
CAT-SAA1-ORDTRK ······41
CAT-UV22-MS26
CAT-WAVE 7, 9, 43
CC-24 18, 31
CC-42R 18, 31
CC-43CT18
CC-43S18
CF-2727

D DA-21 17, 18, 30, 31, 42, 48

E
EC-02S
EC-02SB
EC-02SD 30, 48
EC-02SE 30, 48
EC-0300148
EC-04 ····· 17, 48
EC-04A 17, 48
EC-04B 17, 48
EC-04C 17, 48
EC-04D 17, 48
EC-04E 17, 48
EC-04S48
EC-40A
EC-40B
EC-40C
EC-40D
EC-54S48
EC-54SA48
EC-54SB48
EC-90A17, 18, 31, 48
EC-90B17, 18, 31, 48

F
FI-01A44
FI-0244
К

KWS-0315

L
LF-20 20, 30
LR-07 18, 31, 43
LS-10C 20, 30
LS-40C 20, 30

М

MC-20CF215
MC-20SD215
MC-20SS215
MC-25LC115
MC-32SP315
MC-51SD115
MC-51SS115
ME' Scope VES
MS-11A12

Ν

NA-28
NA-39A12
NA-4211, 17, 18, 48
NC-39A 18, 31
NC-72B 15, 17, 18
NC-72-S2617
NC-72-S2717
NC-75 15, 17, 18
NC-75-02217
NC-75-S1117
NC-98E 18, 31
NC-99A 18, 27, 31
NE-21P18
NH-04B 14, 17
NH-05B 14, 17
NH-06A 14, 17
NH-12A 14, 17
NH-17 14, 17
NH-17A 14, 17
NH-22A 14, 17
NH-22AT17
NL-2711
NL-43 ····· 8, 18, 48
NL-53
NL-63
NX-28BA
NX-28FT
NX-28WR
NX-43EX10
NX-43FT10
NX-43RT10
NX-43WR10
NX-50
NX-63RT10
Р

P
PF-10
PF-3120
PF-60A20
PV-03 19, 20, 30
PV-08A 19, 30
PV-10B 19, 28
PV-10T28
PV-44A 19, 30
PV-6223
PV-63 19, 28, 30

Р	
PV-65 ·····	19, 28, 30
PV-83C	22
PV-83CW	23
PV-85 ·····	19, 30
PV-86 ·····	19, 30
PV-87 ·····	19, 30
PV-90B	19, 30
PV-90H	19, 30
PV-90T	19, 30
PV-91C	19, 30
PV-91CH ······	19, 30
PV-93	19, 30
PV-94	19, 30
PV-95 ·····	19, 30
PV-97	19, 30
PV-97C	19, 23, 30
PV-97I	19, 23, 30

R RIONOTE17, 18, 30, 31, 40, 48

S
SA-02A4…17, 18, 30, 31, 32, 42, 48
SA-02M …17, 18, 30, 31, 32, 42, 48
SA-A1B240
SA-A1B440
SA-A1WD40
SC-AC04313
SF-0644
SI-31I35
SI-33I35
ST-8015
ST-80-10015
ST-9115
SX-A1CMP41
SX-A1FT41
SX-A1RT41
SX-A1VA41
SX-A1WR41

Т

TWS-0115

U
UA-1017
UA-1217
UA-2017
UA-31 ····· 15, 17
UA-9048
UC-27 ····· 14, 16, 17
UC-29 ····· 14, 16, 17
UC-30 ····· 14, 17
UC-31 ····· 14, 16, 17
UC-33P 14, 16, 17
UC-34P 14, 16, 17
UC-35P 14, 16, 17
UC-52 14, 16, 17
UC-52T 14, 17
UC-54 14, 16, 17
UC-57 14, 16, 17
UC-57T 14, 17
UC-59 14, 16, 17
UC-59T 14, 17
UG-2028
UG-2128
UG-3328
UG-5028
UG-9028
UN-1411, 17, 18, 48
UV-1526, 30, 31, 48
UV-16 27, 30, 31, 48
UV-22 11, 18, 26, 30, 31

V
VA-12 ····· 25, 31
VE-1020
VM-5423
VM-55 22, 31, 48
VM-5621
VM-63C24
VM-82A 24, 31
VM-8327, 30, 31, 48
VP-26A 20, 30
VP-33A22
VP-40 20, 30
VP-42 20, 30
VP-51A
VP-51B30
VP-51C30
VP-51I
VP-51J30
VP-51L
VP-51LB30
VP-51LC
VP-51W30
VP-51WL30
VP-52C 19, 30
VP-53S19
VP-53T19
VP-54D21
VP-54L21
VP-8023
VT-0647
VX-54FT23
VX-54WB123
VX-54WH23
VX-54WS23
VX-55EX22
VX-55RT22
VX-55WR22
VX-56RT21
VX-56WR21
W
WS-01 15, 17
WS-05 15. 17

V

WS-05 15, 17 WS-10 15, 17 WS-1312 WS-1515 WS1500615 WS-1615

YI-01	
	14
Others	

5SLIK	 15
5WKR4030	 18, 31

INDEX(Name)

Alphanumeric
1/2 inch microphone adapter ·····17
1/2 inch Nose Cone 15, 17
1/3 Octave Real-time Analysis Program22
1/3 octave Band Analysis Program21
1/4 inch microphone adapter ·····17
2-Channel Charge Amplifier27, 30, 31, 48
3-Axis Vibration Meter23
3-ch preamplifier23
4 channel Data Recorder 17, 18, 30, 31, 42, 48
4-20 mA Isolation Unit ······28
4-Channel Signal Analyzer 32, 48
7P Microphone Extension Cable48

А

7.4
AC Adapter 18, 27, 31
Accelerometer Cable48
AC/DC Output splitter cable18
Acoustic Camera13
Acoustical Volumeter47
Airborne Noise/Floor Impact Noise
Insulation Measurement Software
Aircraft Noise Monitoring System12
All-weather Windscreen12
Anechoic Box (Compact Type)45
Anechoic Room45
Array Type Visualization Software

В	
Battery Pack	15 18 31
Battery Unit 11, 18,	, ,
Bearing Vibration Evaluation System	
BNC Adapter ·····	
	- ,
BNC-BNC Cable	
BNC-BNC Coaxial Cable	, ,
BNC-mini plug Cable	,
Building Acoustic Card	7

С

Calibration Exciter
CF Card15
Charge Converter 20, 30
Comparator Output / Trigger input cable18
Condenser Microphone 14, 16, 17

D

Data Management Software For Environmental
Measurement 10, 22
Data Recorder 18, 31, 48
DIN Plate21
Dual Windscreen for Wind Turbine Noise
Measurement15

Environmental Noise Monitor12
Extended Function Program 10, 22
Extension Cable 17, 30, 48

F

FFT Analysis Card (NX-28FT) ······
FFT Analysis Card (VX-54FT) 23
FFT Analysis Program system10
FFT & Order Tracking Evaluation System
Flexible Rod17
Force sensor20

G

General-Purpose Vibration

Meter 24, 27, 30, 31, 48

Н

Hand-Arm Vibration Card23
Hand-arm Vibration Measurement Software37
Heat-resistant Cable
Heavy Floor Impact Source44
I
Impact Ball44
Impact Force Measuring Device
Impedance Head20

Impedance Head20
Impedance Tube46
Interface Cable 18, 31
Interface Unit 11, 18, 26, 30, 31

J

Judgement Program	41
Junction Box	

L

L-bracket	21
Level Recorder ·····	18, 31, 43
Loss Factor Measurement Software	33

Μ

Magnet Attachment19
Marine Vibration Card23
Measuring Amplifier11, 17, 18, 48
Memory Card15
Microphone Holder48
Microphone Preamplifier48
Microphone With Preamplifier14
Mode Analysis Software36
Multi-Channel Signal
Analzer17, 18, 30, 31, 32, 42, 48
N

Noise Arrival Direction Identification Unit12

0

Octave, 1/3 Octave Real-time
Analysis Program10
Order Tracking Program ······41
Outdoor Microphone12

Р

-
Piezoelectric Accelerometer19, 28, 30, 48
Pistonphone 15, 17, 18
Pocketable Vibration Meter24
Portable Multi-function Measuring
System 17, 18, 30, 31, 40, 48
Preamplifier14, 17, 28, 30
PV-08 Cable
PV-97 Tri-axial Accelerometer Cable30
PV-97I Tri-axial Accelerometer Cable30

R
Rack Mounting Base27
Rack Mount Panel28
Random Noise Generator44
Real-time Sound Quality Evaluation System
for Noise Detection
Reference Level Comparison Method Evaluation
System
Reference Piezoelectric Accelerometer20
Report Creation Support Tool37
RIONOTE 2 channel Amplifier40
RIONOTE 4 channel Amplifier40
RIONOTE Maine Control Unit40
RIONOTE Software for FFT41
RIONOTE Software for 1/1 and 1/3 Octaves41
RIONOTE Software for Waveform Recording ·····41
RIONOTE Wireless Dock40
RS-232C Serial I/O Cable 18, 31

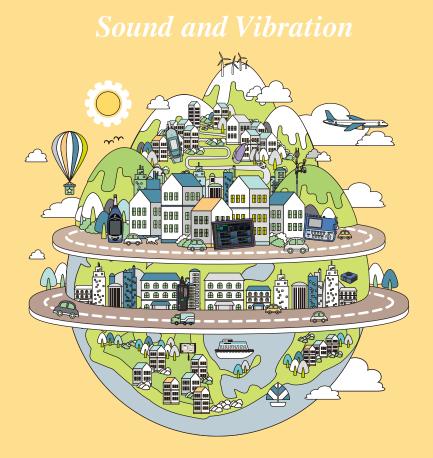
S

5
SD Card15
Seat Accelerometer23
Self-learning Evaluation System
Servo Accelerometer
Servo Accelerometer Power Supply 20, 30
Sound and Vibration Measurement System36
Sound Calibrator 15, 17, 18
Sound Intensity Measurement
Software35
Sound Intensity Probe35
Sound Level Meter (class 1) 6, 8, 18
Sound Level Meter (class 2) 8, 11, 18
Sound Level Meter Cable48
Sound Level Meter Unit11, 17, 18, 48
Sound Power Level Measurement Software
for Construction Machinery
Sound Power Level Measurement Software
for Hemi-anechoic Room34
Sound Power Level Measurement Software
for Reverberation Room ······34
Sound-Proof Chamber45
Sound Quality Evaluation Software
Sound Source Location Software35
SSR Receiver Unit12
Standard Cable

Т

Tapping Machine Light Floor Impact Sound
Generator44
Threshold Evaluation System
Throughput Disk
Tracking Analysis Software
Triaxial Accelerometer48
Tri-axial Groundborne Vibration Meter21
Triaxial Simultaneous Measurement
Intensity Probe35
Tri-axial Standard Cable30
Tripod 15

U


Ultra-compact Accelerometer Cable
User Filter ·····28
UV-22 Sound and Vibration Monitoring System26

V

V
Vibration Analysis Program41
Vibration Analyzer 25, 31
Vibration Calibrator
Vibration Level Meter 22, 31, 48
Vibration Level Meter / Vibration Meter
Accelerometer Cable48
Vibration Level Meter / Vibration Meter Cable48
Vibration Level Meter Cable48
Vibration Meter Preamplifier20
Vibration Meter Unit26, 30, 31, 48
Vibration Monitor28
Viewer Software42
Viscometer47

W

Waveform Analysis Software 7, 10, 43
Waveform Analysis Software for
Groundborne Vibration21
Waveform Data Manipulation Software37
Waveform Recording Card 7
Waveform Recording Program10, 21,22
Whole Body Vibration Card23
Windscreen 15, 17

https://rion-sv.com/

RION CO., LTD. is recognized by the JCSS which uses ISO/IEC 17025 as an accreditation standard and bases its accreditation scheme on ISO/IEC 17011. JCSS is operated by the accreditation body (IA Japan) which is a signatory to the Asia Pacific Accreditation Cooperation (APAC) as well as the International Laboratory Accreditation Cooperation (ILAC). The Quality Assurance Section of RION CO., LTD. is an international MRA compliant JCSS operator with the accreditation number JCSS 0197.

* Windows is a trademark of Microsoft Corporation. * Specifications subject to change without notice.

Distributed by:

3-20-41, Higashimotomachi, Kokubunji, Tokyo 185-8533, Japan Tel: +81-42-359-7888 Fax: +81-42-359-7442